MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwhash Unicode version

Theorem slwhash 14935
Description: A sylow subgroup has cardinality equal to the maximum power of  P dividing the group. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
fislw.1  |-  X  =  ( Base `  G
)
slwhash.3  |-  ( ph  ->  X  e.  Fin )
slwhash.4  |-  ( ph  ->  H  e.  ( P pSyl 
G ) )
Assertion
Ref Expression
slwhash  |-  ( ph  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )

Proof of Theorem slwhash
Dummy variables  g 
k  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fislw.1 . . 3  |-  X  =  ( Base `  G
)
2 slwhash.4 . . . . 5  |-  ( ph  ->  H  e.  ( P pSyl 
G ) )
3 slwsubg 14921 . . . . 5  |-  ( H  e.  ( P pSyl  G
)  ->  H  e.  (SubGrp `  G ) )
42, 3syl 15 . . . 4  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
5 subgrcl 14626 . . . 4  |-  ( H  e.  (SubGrp `  G
)  ->  G  e.  Grp )
64, 5syl 15 . . 3  |-  ( ph  ->  G  e.  Grp )
7 slwhash.3 . . 3  |-  ( ph  ->  X  e.  Fin )
8 slwprm 14920 . . . 4  |-  ( H  e.  ( P pSyl  G
)  ->  P  e.  Prime )
92, 8syl 15 . . 3  |-  ( ph  ->  P  e.  Prime )
101grpbn0 14511 . . . . . 6  |-  ( G  e.  Grp  ->  X  =/=  (/) )
116, 10syl 15 . . . . 5  |-  ( ph  ->  X  =/=  (/) )
12 hashnncl 11354 . . . . . 6  |-  ( X  e.  Fin  ->  (
( # `  X )  e.  NN  <->  X  =/=  (/) ) )
137, 12syl 15 . . . . 5  |-  ( ph  ->  ( ( # `  X
)  e.  NN  <->  X  =/=  (/) ) )
1411, 13mpbird 223 . . . 4  |-  ( ph  ->  ( # `  X
)  e.  NN )
159, 14pccld 12903 . . 3  |-  ( ph  ->  ( P  pCnt  ( # `
 X ) )  e.  NN0 )
16 pcdvds 12916 . . . 4  |-  ( ( P  e.  Prime  /\  ( # `
 X )  e.  NN )  ->  ( P ^ ( P  pCnt  (
# `  X )
) )  ||  ( # `
 X ) )
179, 14, 16syl2anc 642 . . 3  |-  ( ph  ->  ( P ^ ( P  pCnt  ( # `  X
) ) )  ||  ( # `  X ) )
181, 6, 7, 9, 15, 17sylow1 14914 . 2  |-  ( ph  ->  E. k  e.  (SubGrp `  G ) ( # `  k )  =  ( P ^ ( P 
pCnt  ( # `  X
) ) ) )
197adantr 451 . . . . . 6  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  X  e.  Fin )
204adantr 451 . . . . . 6  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  H  e.  (SubGrp `  G ) )
21 simprl 732 . . . . . 6  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  k  e.  (SubGrp `  G ) )
22 eqid 2283 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
23 eqid 2283 . . . . . . . . 9  |-  ( Gs  H )  =  ( Gs  H )
2423slwpgp 14924 . . . . . . . 8  |-  ( H  e.  ( P pSyl  G
)  ->  P pGrp  ( Gs  H ) )
252, 24syl 15 . . . . . . 7  |-  ( ph  ->  P pGrp  ( Gs  H ) )
2625adantr 451 . . . . . 6  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  P pGrp  ( Gs  H
) )
27 simprr 733 . . . . . 6  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
28 eqid 2283 . . . . . 6  |-  ( -g `  G )  =  (
-g `  G )
291, 19, 20, 21, 22, 26, 27, 28sylow2b 14934 . . . . 5  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  E. g  e.  X  H  C_  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )
30 simprr 733 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  H  C_  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )
312ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  H  e.  ( P pSyl  G )
)
3231, 8syl 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  P  e.  Prime )
3315ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( P  pCnt  ( # `  X
) )  e.  NN0 )
3421adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  k  e.  (SubGrp `  G ) )
35 simprl 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  g  e.  X )
36 eqid 2283 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  =  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )
371, 22, 28, 36conjsubg 14714 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  (SubGrp `  G )  /\  g  e.  X )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G ) )
3834, 35, 37syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  e.  (SubGrp `  G )
)
39 eqid 2283 . . . . . . . . . . . . . . . 16  |-  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  =  ( Gs 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )
4039subgbas 14625 . . . . . . . . . . . . . . 15  |-  ( ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  =  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) ) )
4138, 40syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  =  ( Base `  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) ) )
4241fveq2d 5529 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  =  (
# `  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) ) ) )
431, 22, 28, 36conjsubgen 14715 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  (SubGrp `  G )  /\  g  e.  X )  ->  k  ~~  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )
4434, 35, 43syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  k  ~~  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )
457ad2antrr 706 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  X  e.  Fin )
461subgss 14622 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  (SubGrp `  G
)  ->  k  C_  X )
4734, 46syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  k  C_  X )
48 ssfi 7083 . . . . . . . . . . . . . . . . 17  |-  ( ( X  e.  Fin  /\  k  C_  X )  -> 
k  e.  Fin )
4945, 47, 48syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  k  e.  Fin )
501subgss 14622 . . . . . . . . . . . . . . . . . 18  |-  ( ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  C_  X )
5138, 50syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  C_  X )
52 ssfi 7083 . . . . . . . . . . . . . . . . 17  |-  ( ( X  e.  Fin  /\  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  C_  X )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  e. 
Fin )
5345, 51, 52syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  e. 
Fin )
54 hashen 11346 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  Fin  /\  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  Fin )  ->  ( ( # `  k
)  =  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )  <-> 
k  ~~  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )
5549, 53, 54syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( ( # `
 k )  =  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  <->  k  ~~  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )
5644, 55mpbird 223 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  k
)  =  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )
57 simplrr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
5856, 57eqtr3d 2317 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  =  ( P ^ ( P 
pCnt  ( # `  X
) ) ) )
5942, 58eqtr3d 2317 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) )
60 oveq2 5866 . . . . . . . . . . . . . 14  |-  ( n  =  ( P  pCnt  (
# `  X )
)  ->  ( P ^ n )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) )
6160eqeq2d 2294 . . . . . . . . . . . . 13  |-  ( n  =  ( P  pCnt  (
# `  X )
)  ->  ( ( # `
 ( Base `  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) ) )  =  ( P ^
n )  <->  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )
6261rspcev 2884 . . . . . . . . . . . 12  |-  ( ( ( P  pCnt  ( # `
 X ) )  e.  NN0  /\  ( # `
 ( Base `  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) ) )  =  ( P ^
( P  pCnt  ( # `
 X ) ) ) )  ->  E. n  e.  NN0  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ n
) )
6333, 59, 62syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  E. n  e.  NN0  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ n
) )
6439subggrp 14624 . . . . . . . . . . . . 13  |-  ( ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G )  ->  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  e.  Grp )
6538, 64syl 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  e.  Grp )
6641, 53eqeltrrd 2358 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  e.  Fin )
67 eqid 2283 . . . . . . . . . . . . 13  |-  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  =  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )
6867pgpfi 14916 . . . . . . . . . . . 12  |-  ( ( ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )  e.  Grp  /\  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) )  e.  Fin )  ->  ( P pGrp  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  <->  ( P  e.  Prime  /\  E. n  e.  NN0  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ n
) ) ) )
6965, 66, 68syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( P pGrp  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )  <-> 
( P  e.  Prime  /\ 
E. n  e.  NN0  ( # `  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) ) )  =  ( P ^ n ) ) ) )
7032, 63, 69mpbir2and 888 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  P pGrp  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )
7139slwispgp 14922 . . . . . . . . . . 11  |-  ( ( H  e.  ( P pSyl 
G )  /\  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G ) )  -> 
( ( H  C_  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  /\  P pGrp  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )  <->  H  =  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )
7231, 38, 71syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( ( H  C_  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  /\  P pGrp  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  <->  H  =  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )
7330, 70, 72mpbi2and 887 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  H  =  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )
7473fveq2d 5529 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  H
)  =  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )
7574, 58eqtrd 2315 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
7675expr 598 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  g  e.  X )  ->  ( H  C_  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  -> 
( # `  H )  =  ( P ^
( P  pCnt  ( # `
 X ) ) ) ) )
7776rexlimdva 2667 . . . . 5  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  ( E. g  e.  X  H  C_  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
7829, 77mpd 14 . . . 4  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
7978expr 598 . . 3  |-  ( (
ph  /\  k  e.  (SubGrp `  G ) )  ->  ( ( # `  k )  =  ( P ^ ( P 
pCnt  ( # `  X
) ) )  -> 
( # `  H )  =  ( P ^
( P  pCnt  ( # `
 X ) ) ) ) )
8079rexlimdva 2667 . 2  |-  ( ph  ->  ( E. k  e.  (SubGrp `  G )
( # `  k )  =  ( P ^
( P  pCnt  ( # `
 X ) ) )  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
8118, 80mpd 14 1  |-  ( ph  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544    C_ wss 3152   (/)c0 3455   class class class wbr 4023    e. cmpt 4077   ran crn 4690   ` cfv 5255  (class class class)co 5858    ~~ cen 6860   Fincfn 6863   NNcn 9746   NN0cn0 9965   ^cexp 11104   #chash 11337    || cdivides 12531   Primecprime 12758    pCnt cpc 12889   Basecbs 13148   ↾s cress 13149   +g cplusg 13208   Grpcgrp 14362   -gcsg 14365  SubGrpcsubg 14615   pGrp cpgp 14842   pSyl cslw 14843
This theorem is referenced by:  fislw  14936  sylow2  14937  sylow3lem4  14941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-ec 6662  df-qs 6666  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-dvds 12532  df-gcd 12686  df-prm 12759  df-pc 12890  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-eqg 14620  df-ghm 14681  df-ga 14744  df-od 14844  df-pgp 14846  df-slw 14847
  Copyright terms: Public domain W3C validator