MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwhash Unicode version

Theorem slwhash 15034
Description: A sylow subgroup has cardinality equal to the maximum power of  P dividing the group. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
fislw.1  |-  X  =  ( Base `  G
)
slwhash.3  |-  ( ph  ->  X  e.  Fin )
slwhash.4  |-  ( ph  ->  H  e.  ( P pSyl 
G ) )
Assertion
Ref Expression
slwhash  |-  ( ph  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )

Proof of Theorem slwhash
Dummy variables  g 
k  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fislw.1 . . 3  |-  X  =  ( Base `  G
)
2 slwhash.4 . . . . 5  |-  ( ph  ->  H  e.  ( P pSyl 
G ) )
3 slwsubg 15020 . . . . 5  |-  ( H  e.  ( P pSyl  G
)  ->  H  e.  (SubGrp `  G ) )
42, 3syl 15 . . . 4  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
5 subgrcl 14725 . . . 4  |-  ( H  e.  (SubGrp `  G
)  ->  G  e.  Grp )
64, 5syl 15 . . 3  |-  ( ph  ->  G  e.  Grp )
7 slwhash.3 . . 3  |-  ( ph  ->  X  e.  Fin )
8 slwprm 15019 . . . 4  |-  ( H  e.  ( P pSyl  G
)  ->  P  e.  Prime )
92, 8syl 15 . . 3  |-  ( ph  ->  P  e.  Prime )
101grpbn0 14610 . . . . . 6  |-  ( G  e.  Grp  ->  X  =/=  (/) )
116, 10syl 15 . . . . 5  |-  ( ph  ->  X  =/=  (/) )
12 hashnncl 11447 . . . . . 6  |-  ( X  e.  Fin  ->  (
( # `  X )  e.  NN  <->  X  =/=  (/) ) )
137, 12syl 15 . . . . 5  |-  ( ph  ->  ( ( # `  X
)  e.  NN  <->  X  =/=  (/) ) )
1411, 13mpbird 223 . . . 4  |-  ( ph  ->  ( # `  X
)  e.  NN )
159, 14pccld 13000 . . 3  |-  ( ph  ->  ( P  pCnt  ( # `
 X ) )  e.  NN0 )
16 pcdvds 13013 . . . 4  |-  ( ( P  e.  Prime  /\  ( # `
 X )  e.  NN )  ->  ( P ^ ( P  pCnt  (
# `  X )
) )  ||  ( # `
 X ) )
179, 14, 16syl2anc 642 . . 3  |-  ( ph  ->  ( P ^ ( P  pCnt  ( # `  X
) ) )  ||  ( # `  X ) )
181, 6, 7, 9, 15, 17sylow1 15013 . 2  |-  ( ph  ->  E. k  e.  (SubGrp `  G ) ( # `  k )  =  ( P ^ ( P 
pCnt  ( # `  X
) ) ) )
197adantr 451 . . . . . 6  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  X  e.  Fin )
204adantr 451 . . . . . 6  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  H  e.  (SubGrp `  G ) )
21 simprl 732 . . . . . 6  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  k  e.  (SubGrp `  G ) )
22 eqid 2358 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
23 eqid 2358 . . . . . . . . 9  |-  ( Gs  H )  =  ( Gs  H )
2423slwpgp 15023 . . . . . . . 8  |-  ( H  e.  ( P pSyl  G
)  ->  P pGrp  ( Gs  H ) )
252, 24syl 15 . . . . . . 7  |-  ( ph  ->  P pGrp  ( Gs  H ) )
2625adantr 451 . . . . . 6  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  P pGrp  ( Gs  H
) )
27 simprr 733 . . . . . 6  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
28 eqid 2358 . . . . . 6  |-  ( -g `  G )  =  (
-g `  G )
291, 19, 20, 21, 22, 26, 27, 28sylow2b 15033 . . . . 5  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  E. g  e.  X  H  C_  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )
30 simprr 733 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  H  C_  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )
312ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  H  e.  ( P pSyl  G )
)
3231, 8syl 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  P  e.  Prime )
3315ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( P  pCnt  ( # `  X
) )  e.  NN0 )
3421adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  k  e.  (SubGrp `  G ) )
35 simprl 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  g  e.  X )
36 eqid 2358 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  =  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )
371, 22, 28, 36conjsubg 14813 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  (SubGrp `  G )  /\  g  e.  X )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G ) )
3834, 35, 37syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  e.  (SubGrp `  G )
)
39 eqid 2358 . . . . . . . . . . . . . . . 16  |-  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  =  ( Gs 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )
4039subgbas 14724 . . . . . . . . . . . . . . 15  |-  ( ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  =  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) ) )
4138, 40syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  =  ( Base `  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) ) )
4241fveq2d 5612 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  =  (
# `  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) ) ) )
431, 22, 28, 36conjsubgen 14814 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  (SubGrp `  G )  /\  g  e.  X )  ->  k  ~~  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )
4434, 35, 43syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  k  ~~  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )
457ad2antrr 706 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  X  e.  Fin )
461subgss 14721 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  (SubGrp `  G
)  ->  k  C_  X )
4734, 46syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  k  C_  X )
48 ssfi 7171 . . . . . . . . . . . . . . . . 17  |-  ( ( X  e.  Fin  /\  k  C_  X )  -> 
k  e.  Fin )
4945, 47, 48syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  k  e.  Fin )
501subgss 14721 . . . . . . . . . . . . . . . . . 18  |-  ( ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  C_  X )
5138, 50syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  C_  X )
52 ssfi 7171 . . . . . . . . . . . . . . . . 17  |-  ( ( X  e.  Fin  /\  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  C_  X )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  e. 
Fin )
5345, 51, 52syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  e. 
Fin )
54 hashen 11439 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  Fin  /\  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  Fin )  ->  ( ( # `  k
)  =  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )  <-> 
k  ~~  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )
5549, 53, 54syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( ( # `
 k )  =  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  <->  k  ~~  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )
5644, 55mpbird 223 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  k
)  =  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )
57 simplrr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
5856, 57eqtr3d 2392 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  =  ( P ^ ( P 
pCnt  ( # `  X
) ) ) )
5942, 58eqtr3d 2392 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) )
60 oveq2 5953 . . . . . . . . . . . . . 14  |-  ( n  =  ( P  pCnt  (
# `  X )
)  ->  ( P ^ n )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) )
6160eqeq2d 2369 . . . . . . . . . . . . 13  |-  ( n  =  ( P  pCnt  (
# `  X )
)  ->  ( ( # `
 ( Base `  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) ) )  =  ( P ^
n )  <->  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )
6261rspcev 2960 . . . . . . . . . . . 12  |-  ( ( ( P  pCnt  ( # `
 X ) )  e.  NN0  /\  ( # `
 ( Base `  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) ) )  =  ( P ^
( P  pCnt  ( # `
 X ) ) ) )  ->  E. n  e.  NN0  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ n
) )
6333, 59, 62syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  E. n  e.  NN0  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ n
) )
6439subggrp 14723 . . . . . . . . . . . . 13  |-  ( ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G )  ->  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  e.  Grp )
6538, 64syl 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  e.  Grp )
6641, 53eqeltrrd 2433 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  e.  Fin )
67 eqid 2358 . . . . . . . . . . . . 13  |-  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  =  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )
6867pgpfi 15015 . . . . . . . . . . . 12  |-  ( ( ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )  e.  Grp  /\  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) )  e.  Fin )  ->  ( P pGrp  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )  <->  ( P  e.  Prime  /\  E. n  e.  NN0  ( # `  ( Base `  ( Gs  ran  (
x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G
) g ) ) ) ) )  =  ( P ^ n
) ) ) )
6965, 66, 68syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( P pGrp  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) )  <-> 
( P  e.  Prime  /\ 
E. n  e.  NN0  ( # `  ( Base `  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) ) )  =  ( P ^ n ) ) ) )
7032, 63, 69mpbir2and 888 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  P pGrp  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )
7139slwispgp 15021 . . . . . . . . . . 11  |-  ( ( H  e.  ( P pSyl 
G )  /\  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  e.  (SubGrp `  G ) )  -> 
( ( H  C_  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  /\  P pGrp  ( Gs  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )  <->  H  =  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )
7231, 38, 71syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( ( H  C_  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  /\  P pGrp  ( Gs  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  <->  H  =  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) ) )
7330, 70, 72mpbi2and 887 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  H  =  ran  ( x  e.  k 
|->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) ) )
7473fveq2d 5612 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  H
)  =  ( # `  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )
7574, 58eqtrd 2390 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  ( g  e.  X  /\  H  C_ 
ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) ) ) )  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
7675expr 598 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  (SubGrp `  G )  /\  ( # `
 k )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )  /\  g  e.  X )  ->  ( H  C_  ran  ( x  e.  k  |->  ( ( g ( +g  `  G
) x ) (
-g `  G )
g ) )  -> 
( # `  H )  =  ( P ^
( P  pCnt  ( # `
 X ) ) ) ) )
7776rexlimdva 2743 . . . . 5  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  ( E. g  e.  X  H  C_  ran  ( x  e.  k  |->  ( ( g ( +g  `  G ) x ) ( -g `  G ) g ) )  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
7829, 77mpd 14 . . . 4  |-  ( (
ph  /\  ( k  e.  (SubGrp `  G )  /\  ( # `  k
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
7978expr 598 . . 3  |-  ( (
ph  /\  k  e.  (SubGrp `  G ) )  ->  ( ( # `  k )  =  ( P ^ ( P 
pCnt  ( # `  X
) ) )  -> 
( # `  H )  =  ( P ^
( P  pCnt  ( # `
 X ) ) ) ) )
8079rexlimdva 2743 . 2  |-  ( ph  ->  ( E. k  e.  (SubGrp `  G )
( # `  k )  =  ( P ^
( P  pCnt  ( # `
 X ) ) )  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
8118, 80mpd 14 1  |-  ( ph  ->  ( # `  H
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710    =/= wne 2521   E.wrex 2620    C_ wss 3228   (/)c0 3531   class class class wbr 4104    e. cmpt 4158   ran crn 4772   ` cfv 5337  (class class class)co 5945    ~~ cen 6948   Fincfn 6951   NNcn 9836   NN0cn0 10057   ^cexp 11197   #chash 11430    || cdivides 12628   Primecprime 12855    pCnt cpc 12986   Basecbs 13245   ↾s cress 13246   +g cplusg 13305   Grpcgrp 14461   -gcsg 14464  SubGrpcsubg 14714   pGrp cpgp 14941   pSyl cslw 14942
This theorem is referenced by:  fislw  15035  sylow2  15036  sylow3lem4  15040
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-disj 4075  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-2o 6567  df-oadd 6570  df-omul 6571  df-er 6747  df-ec 6749  df-qs 6753  df-map 6862  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-sup 7284  df-oi 7315  df-card 7662  df-acn 7665  df-cda 7884  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-n0 10058  df-z 10117  df-uz 10323  df-q 10409  df-rp 10447  df-fz 10875  df-fzo 10963  df-fl 11017  df-mod 11066  df-seq 11139  df-exp 11198  df-fac 11382  df-bc 11409  df-hash 11431  df-cj 11680  df-re 11681  df-im 11682  df-sqr 11816  df-abs 11817  df-clim 12058  df-sum 12256  df-dvds 12629  df-gcd 12783  df-prm 12856  df-pc 12987  df-ndx 13248  df-slot 13249  df-base 13250  df-sets 13251  df-ress 13252  df-plusg 13318  df-0g 13503  df-mnd 14466  df-submnd 14515  df-grp 14588  df-minusg 14589  df-sbg 14590  df-mulg 14591  df-subg 14717  df-eqg 14719  df-ghm 14780  df-ga 14843  df-od 14943  df-pgp 14945  df-slw 14946
  Copyright terms: Public domain W3C validator