MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwispgp Unicode version

Theorem slwispgp 14922
Description: Defining property of a Sylow  P-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
slwispgp.1  |-  S  =  ( Gs  K )
Assertion
Ref Expression
slwispgp  |-  ( ( H  e.  ( P pSyl 
G )  /\  K  e.  (SubGrp `  G )
)  ->  ( ( H  C_  K  /\  P pGrp  S )  <->  H  =  K
) )

Proof of Theorem slwispgp
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 isslw 14919 . . 3  |-  ( H  e.  ( P pSyl  G
)  <->  ( P  e. 
Prime  /\  H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G
) ( ( H 
C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) )
21simp3bi 972 . 2  |-  ( H  e.  ( P pSyl  G
)  ->  A. k  e.  (SubGrp `  G )
( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <->  H  =  k ) )
3 sseq2 3200 . . . . 5  |-  ( k  =  K  ->  ( H  C_  k  <->  H  C_  K
) )
4 oveq2 5866 . . . . . . 7  |-  ( k  =  K  ->  ( Gs  k )  =  ( Gs  K ) )
5 slwispgp.1 . . . . . . 7  |-  S  =  ( Gs  K )
64, 5syl6eqr 2333 . . . . . 6  |-  ( k  =  K  ->  ( Gs  k )  =  S )
76breq2d 4035 . . . . 5  |-  ( k  =  K  ->  ( P pGrp  ( Gs  k )  <->  P pGrp  S ) )
83, 7anbi12d 691 . . . 4  |-  ( k  =  K  ->  (
( H  C_  k  /\  P pGrp  ( Gs  k
) )  <->  ( H  C_  K  /\  P pGrp  S
) ) )
9 eqeq2 2292 . . . 4  |-  ( k  =  K  ->  ( H  =  k  <->  H  =  K ) )
108, 9bibi12d 312 . . 3  |-  ( k  =  K  ->  (
( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <->  H  =  k )  <->  ( ( H  C_  K  /\  P pGrp  S )  <->  H  =  K
) ) )
1110rspccva 2883 . 2  |-  ( ( A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k )  /\  K  e.  (SubGrp `  G ) )  -> 
( ( H  C_  K  /\  P pGrp  S )  <-> 
H  =  K ) )
122, 11sylan 457 1  |-  ( ( H  e.  ( P pSyl 
G )  /\  K  e.  (SubGrp `  G )
)  ->  ( ( H  C_  K  /\  P pGrp  S )  <->  H  =  K
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Primecprime 12758   ↾s cress 13149  SubGrpcsubg 14615   pGrp cpgp 14842   pSyl cslw 14843
This theorem is referenced by:  slwpss  14923  slwpgp  14924  subgslw  14927  slwhash  14935
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-subg 14618  df-slw 14847
  Copyright terms: Public domain W3C validator