MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwpgp Unicode version

Theorem slwpgp 15017
Description: A Sylow  P-subgroup is a  P-group. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
slwpgp.1  |-  S  =  ( Gs  H )
Assertion
Ref Expression
slwpgp  |-  ( H  e.  ( P pSyl  G
)  ->  P pGrp  S )

Proof of Theorem slwpgp
StepHypRef Expression
1 eqid 2358 . . 3  |-  H  =  H
2 slwsubg 15014 . . . 4  |-  ( H  e.  ( P pSyl  G
)  ->  H  e.  (SubGrp `  G ) )
3 slwpgp.1 . . . . 5  |-  S  =  ( Gs  H )
43slwispgp 15015 . . . 4  |-  ( ( H  e.  ( P pSyl 
G )  /\  H  e.  (SubGrp `  G )
)  ->  ( ( H  C_  H  /\  P pGrp  S )  <->  H  =  H
) )
52, 4mpdan 649 . . 3  |-  ( H  e.  ( P pSyl  G
)  ->  ( ( H  C_  H  /\  P pGrp  S )  <->  H  =  H
) )
61, 5mpbiri 224 . 2  |-  ( H  e.  ( P pSyl  G
)  ->  ( H  C_  H  /\  P pGrp  S
) )
76simprd 449 1  |-  ( H  e.  ( P pSyl  G
)  ->  P pGrp  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710    C_ wss 3228   class class class wbr 4102   ` cfv 5334  (class class class)co 5942   ↾s cress 13240  SubGrpcsubg 14708   pGrp cpgp 14935   pSyl cslw 14936
This theorem is referenced by:  slwhash  15028  sylow2  15030  sylow3lem6  15036
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-subg 14711  df-slw 14940
  Copyright terms: Public domain W3C validator