MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smcnlem Unicode version

Theorem smcnlem 21286
Description: Lemma for smcn 21287. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
smcn.c  |-  C  =  ( IndMet `  U )
smcn.j  |-  J  =  ( MetOpen `  C )
smcn.s  |-  S  =  ( .s OLD `  U
)
smcn.k  |-  K  =  ( TopOpen ` fld )
smcn.x  |-  X  =  ( BaseSet `  U )
smcn.n  |-  N  =  ( normCV `  U )
smcn.u  |-  U  e.  NrmCVec
smcn.t  |-  T  =  ( 1  /  (
1  +  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  r ) ) )
Assertion
Ref Expression
smcnlem  |-  S  e.  ( ( K  tX  J )  Cn  J
)
Distinct variable groups:    x, r,
y, C    J, r, x, y    U, r, x, y    K, r, x, y    S, r, x, y    X, r, x, y
Allowed substitution hints:    T( x, y, r)    N( x, y, r)

Proof of Theorem smcnlem
Dummy variables  s  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smcn.u . . 3  |-  U  e.  NrmCVec
2 smcn.x . . . 4  |-  X  =  ( BaseSet `  U )
3 smcn.s . . . 4  |-  S  =  ( .s OLD `  U
)
42, 3nvsf 21191 . . 3  |-  ( U  e.  NrmCVec  ->  S : ( CC  X.  X ) --> X )
51, 4ax-mp 8 . 2  |-  S :
( CC  X.  X
) --> X
6 smcn.t . . . . . 6  |-  T  =  ( 1  /  (
1  +  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  r ) ) )
7 1rp 10374 . . . . . . . 8  |-  1  e.  RR+
8 simpr 447 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  y  e.  X )
9 smcn.n . . . . . . . . . . . . 13  |-  N  =  ( normCV `  U )
102, 9nvcl 21241 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  y  e.  X )  ->  ( N `  y )  e.  RR )
111, 8, 10sylancr 644 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  ( N `  y
)  e.  RR )
12 abscl 11779 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  ( abs `  x )  e.  RR )
1312adantr 451 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  ( abs `  x
)  e.  RR )
1411, 13readdcld 8878 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  ( ( N `  y )  +  ( abs `  x ) )  e.  RR )
152, 9nvge0 21256 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  y  e.  X )  ->  0  <_  ( N `  y
) )
161, 8, 15sylancr 644 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  0  <_  ( N `  y ) )
17 absge0 11788 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  0  <_  ( abs `  x
) )
1817adantr 451 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  0  <_  ( abs `  x ) )
1911, 13, 16, 18addge0d 9364 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  0  <_  ( ( N `  y )  +  ( abs `  x
) ) )
2014, 19ge0p1rpd 10432 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  ( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  e.  RR+ )
21 rpdivcl 10392 . . . . . . . . 9  |-  ( ( ( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  e.  RR+  /\  r  e.  RR+ )  ->  (
( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r )  e.  RR+ )
2220, 21sylan 457 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  r
)  e.  RR+ )
23 rpaddcl 10390 . . . . . . . 8  |-  ( ( 1  e.  RR+  /\  (
( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r )  e.  RR+ )  ->  (
1  +  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  r ) )  e.  RR+ )
247, 22, 23sylancr 644 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  ->  ( 1  +  ( ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  /  r ) )  e.  RR+ )
2524rpreccld 10416 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  ->  ( 1  / 
( 1  +  ( ( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r ) ) )  e.  RR+ )
266, 25syl5eqel 2380 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  ->  T  e.  RR+ )
27 smcn.c . . . . . . . . . . . 12  |-  C  =  ( IndMet `  U )
282, 27imsmet 21276 . . . . . . . . . . 11  |-  ( U  e.  NrmCVec  ->  C  e.  ( Met `  X ) )
291, 28ax-mp 8 . . . . . . . . . 10  |-  C  e.  ( Met `  X
)
3029a1i 10 . . . . . . . . 9  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  C  e.  ( Met `  X ) )
311a1i 10 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  U  e.  NrmCVec )
32 simplll 734 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  x  e.  CC )
33 simpllr 735 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  y  e.  X
)
342, 3nvscl 21200 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  x  e.  CC  /\  y  e.  X )  ->  (
x S y )  e.  X )
3531, 32, 33, 34syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x S y )  e.  X
)
36 simprll 738 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  z  e.  CC )
37 simprlr 739 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  w  e.  X
)
382, 3nvscl 21200 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  z  e.  CC  /\  w  e.  X )  ->  (
z S w )  e.  X )
3931, 36, 37, 38syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( z S w )  e.  X
)
40 metcl 17913 . . . . . . . . 9  |-  ( ( C  e.  ( Met `  X )  /\  (
x S y )  e.  X  /\  (
z S w )  e.  X )  -> 
( ( x S y ) C ( z S w ) )  e.  RR )
4130, 35, 39, 40syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x S y ) C ( z S w ) )  e.  RR )
422, 3nvscl 21200 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  z  e.  CC  /\  y  e.  X )  ->  (
z S y )  e.  X )
4331, 36, 33, 42syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( z S y )  e.  X
)
44 metcl 17913 . . . . . . . . . 10  |-  ( ( C  e.  ( Met `  X )  /\  (
x S y )  e.  X  /\  (
z S y )  e.  X )  -> 
( ( x S y ) C ( z S y ) )  e.  RR )
4530, 35, 43, 44syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x S y ) C ( z S y ) )  e.  RR )
46 metcl 17913 . . . . . . . . . 10  |-  ( ( C  e.  ( Met `  X )  /\  (
z S y )  e.  X  /\  (
z S w )  e.  X )  -> 
( ( z S y ) C ( z S w ) )  e.  RR )
4730, 43, 39, 46syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( z S y ) C ( z S w ) )  e.  RR )
4845, 47readdcld 8878 . . . . . . . 8  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( x S y ) C ( z S y ) )  +  ( ( z S y ) C ( z S w ) ) )  e.  RR )
49 rpre 10376 . . . . . . . . 9  |-  ( r  e.  RR+  ->  r  e.  RR )
5049ad2antlr 707 . . . . . . . 8  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  r  e.  RR )
51 mettri 17932 . . . . . . . . 9  |-  ( ( C  e.  ( Met `  X )  /\  (
( x S y )  e.  X  /\  ( z S w )  e.  X  /\  ( z S y )  e.  X ) )  ->  ( (
x S y ) C ( z S w ) )  <_ 
( ( ( x S y ) C ( z S y ) )  +  ( ( z S y ) C ( z S w ) ) ) )
5230, 35, 39, 43, 51syl13anc 1184 . . . . . . . 8  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x S y ) C ( z S w ) )  <_  (
( ( x S y ) C ( z S y ) )  +  ( ( z S y ) C ( z S w ) ) ) )
531, 33, 10sylancr 644 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  y )  e.  RR )
5432abscld 11934 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  x
)  e.  RR )
5553, 54readdcld 8878 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( N `
 y )  +  ( abs `  x
) )  e.  RR )
56 peano2re 9001 . . . . . . . . . . 11  |-  ( ( ( N `  y
)  +  ( abs `  x ) )  e.  RR  ->  ( (
( N `  y
)  +  ( abs `  x ) )  +  1 )  e.  RR )
5755, 56syl 15 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  e.  RR )
5826adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  T  e.  RR+ )
5958rpred 10406 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  T  e.  RR )
6057, 59remulcld 8879 . . . . . . . . 9  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  x.  T
)  e.  RR )
6132, 36subcld 9173 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x  -  z )  e.  CC )
6261abscld 11934 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
x  -  z ) )  e.  RR )
6362, 53remulcld 8879 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  ( x  -  z
) )  x.  ( N `  y )
)  e.  RR )
6436abscld 11934 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  z
)  e.  RR )
65 eqid 2296 . . . . . . . . . . . . . . 15  |-  ( -v
`  U )  =  ( -v `  U
)
662, 65nvmcl 21221 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  y  e.  X  /\  w  e.  X )  ->  (
y ( -v `  U ) w )  e.  X )
6731, 33, 37, 66syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( y ( -v `  U ) w )  e.  X
)
682, 9nvcl 21241 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  (
y ( -v `  U ) w )  e.  X )  -> 
( N `  (
y ( -v `  U ) w ) )  e.  RR )
691, 67, 68sylancr 644 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  ( y ( -v
`  U ) w ) )  e.  RR )
7064, 69remulcld 8879 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  z )  x.  ( N `  ( y
( -v `  U
) w ) ) )  e.  RR )
7153, 59remulcld 8879 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( N `
 y )  x.  T )  e.  RR )
72 peano2re 9001 . . . . . . . . . . . . 13  |-  ( ( abs `  x )  e.  RR  ->  (
( abs `  x
)  +  1 )  e.  RR )
7354, 72syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  x )  +  1 )  e.  RR )
7473, 59remulcld 8879 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( abs `  x )  +  1 )  x.  T )  e.  RR )
751, 33, 15sylancr 644 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  0  <_  ( N `  y )
)
7632, 36abssubd 11951 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
x  -  z ) )  =  ( abs `  ( z  -  x
) ) )
7736, 32subcld 9173 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( z  -  x )  e.  CC )
7877abscld 11934 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
z  -  x ) )  e.  RR )
79 eqid 2296 . . . . . . . . . . . . . . . . . . 19  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
8079cnmetdval 18296 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( x ( abs 
o.  -  ) z
)  =  ( abs `  ( x  -  z
) ) )
8132, 36, 80syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x ( abs  o.  -  )
z )  =  ( abs `  ( x  -  z ) ) )
8281, 76eqtrd 2328 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x ( abs  o.  -  )
z )  =  ( abs `  ( z  -  x ) ) )
83 simprrl 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x ( abs  o.  -  )
z )  <  T
)
8482, 83eqbrtrrd 4061 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
z  -  x ) )  <  T )
8578, 59, 84ltled 8983 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
z  -  x ) )  <_  T )
8676, 85eqbrtrd 4059 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
x  -  z ) )  <_  T )
8762, 59, 53, 75, 86lemul1ad 9712 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  ( x  -  z
) )  x.  ( N `  y )
)  <_  ( T  x.  ( N `  y
) ) )
8858rpcnd 10408 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  T  e.  CC )
8953recnd 8877 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  y )  e.  CC )
9088, 89mulcomd 8872 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( T  x.  ( N `  y ) )  =  ( ( N `  y )  x.  T ) )
9187, 90breqtrd 4063 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  ( x  -  z
) )  x.  ( N `  y )
)  <_  ( ( N `  y )  x.  T ) )
9236absge0d 11942 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  0  <_  ( abs `  z ) )
932, 9nvge0 21256 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  (
y ( -v `  U ) w )  e.  X )  -> 
0  <_  ( N `  ( y ( -v
`  U ) w ) ) )
941, 67, 93sylancr 644 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  0  <_  ( N `  ( y
( -v `  U
) w ) ) )
9554, 78readdcld 8878 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  x )  +  ( abs `  ( z  -  x ) ) )  e.  RR )
9632, 36pncan3d 9176 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x  +  ( z  -  x
) )  =  z )
9796fveq2d 5545 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
x  +  ( z  -  x ) ) )  =  ( abs `  z ) )
9832, 77abstrid 11954 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
x  +  ( z  -  x ) ) )  <_  ( ( abs `  x )  +  ( abs `  (
z  -  x ) ) ) )
9997, 98eqbrtrrd 4061 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  z
)  <_  ( ( abs `  x )  +  ( abs `  (
z  -  x ) ) ) )
100 1re 8853 . . . . . . . . . . . . . . 15  |-  1  e.  RR
101100a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  1  e.  RR )
10222adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  r
)  e.  RR+ )
103 ltaddrp 10402 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR  /\  ( ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  /  r )  e.  RR+ )  ->  1  <  ( 1  +  ( ( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r ) ) )
104100, 102, 103sylancr 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  1  <  (
1  +  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  r ) ) )
10524adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( 1  +  ( ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  /  r ) )  e.  RR+ )
106105recgt1d 10420 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( 1  < 
( 1  +  ( ( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r ) )  <->  ( 1  / 
( 1  +  ( ( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r ) ) )  <  1
) )
107104, 106mpbid 201 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( 1  / 
( 1  +  ( ( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r ) ) )  <  1
)
1086, 107syl5eqbr 4072 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  T  <  1
)
10959, 101, 108ltled 8983 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  T  <_  1
)
11078, 59, 101, 85, 109letrd 8989 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  (
z  -  x ) )  <_  1 )
11178, 101, 54, 110leadd2dd 9403 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  x )  +  ( abs `  ( z  -  x ) ) )  <_  ( ( abs `  x )  +  1 ) )
11264, 95, 73, 99, 111letrd 8989 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  z
)  <_  ( ( abs `  x )  +  1 ) )
1132, 65, 9, 27imsdval 21271 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  y  e.  X  /\  w  e.  X )  ->  (
y C w )  =  ( N `  ( y ( -v
`  U ) w ) ) )
11431, 33, 37, 113syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( y C w )  =  ( N `  ( y ( -v `  U
) w ) ) )
115 simprrr 741 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( y C w )  <  T
)
116114, 115eqbrtrrd 4061 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  ( y ( -v
`  U ) w ) )  <  T
)
11769, 59, 116ltled 8983 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  ( y ( -v
`  U ) w ) )  <_  T
)
11864, 73, 69, 59, 92, 94, 112, 117lemul12ad 9715 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  z )  x.  ( N `  ( y
( -v `  U
) w ) ) )  <_  ( (
( abs `  x
)  +  1 )  x.  T ) )
11963, 70, 71, 74, 91, 118le2addd 9406 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( abs `  ( x  -  z ) )  x.  ( N `  y ) )  +  ( ( abs `  z
)  x.  ( N `
 ( y ( -v `  U ) w ) ) ) )  <_  ( (
( N `  y
)  x.  T )  +  ( ( ( abs `  x )  +  1 )  x.  T ) ) )
120 eqid 2296 . . . . . . . . . . . . . 14  |-  ( +v
`  U )  =  ( +v `  U
)
1212, 120, 3, 9, 27imsdval2 21272 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  (
x S y )  e.  X  /\  (
z S y )  e.  X )  -> 
( ( x S y ) C ( z S y ) )  =  ( N `
 ( ( x S y ) ( +v `  U ) ( -u 1 S ( z S y ) ) ) ) )
12231, 35, 43, 121syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x S y ) C ( z S y ) )  =  ( N `  ( ( x S y ) ( +v `  U
) ( -u 1 S ( z S y ) ) ) ) )
123 neg1cn 9829 . . . . . . . . . . . . . . . 16  |-  -u 1  e.  CC
124 mulcl 8837 . . . . . . . . . . . . . . . 16  |-  ( (
-u 1  e.  CC  /\  z  e.  CC )  ->  ( -u 1  x.  z )  e.  CC )
125123, 36, 124sylancr 644 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( -u 1  x.  z )  e.  CC )
1262, 120, 3nvdir 21205 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  (
x  e.  CC  /\  ( -u 1  x.  z
)  e.  CC  /\  y  e.  X )
)  ->  ( (
x  +  ( -u
1  x.  z ) ) S y )  =  ( ( x S y ) ( +v `  U ) ( ( -u 1  x.  z ) S y ) ) )
12731, 32, 125, 33, 126syl13anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x  +  ( -u 1  x.  z ) ) S y )  =  ( ( x S y ) ( +v `  U ) ( (
-u 1  x.  z
) S y ) ) )
12836mulm1d 9247 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( -u 1  x.  z )  =  -u z )
129128oveq2d 5890 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x  +  ( -u 1  x.  z
) )  =  ( x  +  -u z
) )
13032, 36negsubd 9179 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x  +  -u z )  =  ( x  -  z ) )
131129, 130eqtrd 2328 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( x  +  ( -u 1  x.  z
) )  =  ( x  -  z ) )
132131oveq1d 5889 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x  +  ( -u 1  x.  z ) ) S y )  =  ( ( x  -  z
) S y ) )
133123a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  -u 1  e.  CC )
1342, 3nvsass 21202 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  NrmCVec  /\  ( -u 1  e.  CC  /\  z  e.  CC  /\  y  e.  X ) )  -> 
( ( -u 1  x.  z ) S y )  =  ( -u
1 S ( z S y ) ) )
13531, 133, 36, 33, 134syl13anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( -u
1  x.  z ) S y )  =  ( -u 1 S ( z S y ) ) )
136135oveq2d 5890 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x S y ) ( +v `  U ) ( ( -u 1  x.  z ) S y ) )  =  ( ( x S y ) ( +v `  U ) ( -u
1 S ( z S y ) ) ) )
137127, 132, 1363eqtr3d 2336 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x  -  z ) S y )  =  ( ( x S y ) ( +v `  U ) ( -u
1 S ( z S y ) ) ) )
138137fveq2d 5545 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  ( ( x  -  z ) S y ) )  =  ( N `  ( ( x S y ) ( +v `  U
) ( -u 1 S ( z S y ) ) ) ) )
1392, 3, 9nvs 21244 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  (
x  -  z )  e.  CC  /\  y  e.  X )  ->  ( N `  ( (
x  -  z ) S y ) )  =  ( ( abs `  ( x  -  z
) )  x.  ( N `  y )
) )
14031, 61, 33, 139syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  ( ( x  -  z ) S y ) )  =  ( ( abs `  (
x  -  z ) )  x.  ( N `
 y ) ) )
141122, 138, 1403eqtr2d 2334 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x S y ) C ( z S y ) )  =  ( ( abs `  (
x  -  z ) )  x.  ( N `
 y ) ) )
1422, 65, 9, 27imsdval 21271 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  (
z S y )  e.  X  /\  (
z S w )  e.  X )  -> 
( ( z S y ) C ( z S w ) )  =  ( N `
 ( ( z S y ) ( -v `  U ) ( z S w ) ) ) )
14331, 43, 39, 142syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( z S y ) C ( z S w ) )  =  ( N `  ( ( z S y ) ( -v `  U
) ( z S w ) ) ) )
1442, 65, 3nvmdi 21224 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  (
z  e.  CC  /\  y  e.  X  /\  w  e.  X )
)  ->  ( z S ( y ( -v `  U ) w ) )  =  ( ( z S y ) ( -v
`  U ) ( z S w ) ) )
14531, 36, 33, 37, 144syl13anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( z S ( y ( -v
`  U ) w ) )  =  ( ( z S y ) ( -v `  U ) ( z S w ) ) )
146145fveq2d 5545 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  ( z S ( y ( -v `  U ) w ) ) )  =  ( N `  ( ( z S y ) ( -v `  U
) ( z S w ) ) ) )
1472, 3, 9nvs 21244 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  z  e.  CC  /\  ( y ( -v `  U
) w )  e.  X )  ->  ( N `  ( z S ( y ( -v `  U ) w ) ) )  =  ( ( abs `  z )  x.  ( N `  ( y
( -v `  U
) w ) ) ) )
14831, 36, 67, 147syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( N `  ( z S ( y ( -v `  U ) w ) ) )  =  ( ( abs `  z
)  x.  ( N `
 ( y ( -v `  U ) w ) ) ) )
149143, 146, 1483eqtr2d 2334 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( z S y ) C ( z S w ) )  =  ( ( abs `  z
)  x.  ( N `
 ( y ( -v `  U ) w ) ) ) )
150141, 149oveq12d 5892 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( x S y ) C ( z S y ) )  +  ( ( z S y ) C ( z S w ) ) )  =  ( ( ( abs `  (
x  -  z ) )  x.  ( N `
 y ) )  +  ( ( abs `  z )  x.  ( N `  ( y
( -v `  U
) w ) ) ) ) )
15154recnd 8877 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( abs `  x
)  e.  CC )
152 ax-1cn 8811 . . . . . . . . . . . . . 14  |-  1  e.  CC
153152a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  1  e.  CC )
15489, 151, 153addassd 8873 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  =  ( ( N `  y )  +  ( ( abs `  x )  +  1 ) ) )
155154oveq1d 5889 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  x.  T
)  =  ( ( ( N `  y
)  +  ( ( abs `  x )  +  1 ) )  x.  T ) )
15673recnd 8877 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( abs `  x )  +  1 )  e.  CC )
15789, 156, 88adddird 8876 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( N `  y )  +  ( ( abs `  x )  +  1 ) )  x.  T
)  =  ( ( ( N `  y
)  x.  T )  +  ( ( ( abs `  x )  +  1 )  x.  T ) ) )
158155, 157eqtrd 2328 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  x.  T
)  =  ( ( ( N `  y
)  x.  T )  +  ( ( ( abs `  x )  +  1 )  x.  T ) ) )
159119, 150, 1583brtr4d 4069 . . . . . . . . 9  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( x S y ) C ( z S y ) )  +  ( ( z S y ) C ( z S w ) ) )  <_  (
( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  x.  T ) )
16057recnd 8877 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  e.  CC )
161105rpcnd 10408 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( 1  +  ( ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  /  r ) )  e.  CC )
162105rpne0d 10411 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( 1  +  ( ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  /  r ) )  =/=  0 )
163160, 161, 162divrecd 9555 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  (
1  +  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  r ) ) )  =  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  x.  ( 1  / 
( 1  +  ( ( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r ) ) ) ) )
1646oveq2i 5885 . . . . . . . . . . 11  |-  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  x.  T )  =  ( ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  x.  ( 1  /  ( 1  +  ( ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  /  r ) ) ) )
165163, 164syl6reqr 2347 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  x.  T
)  =  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  ( 1  +  ( ( ( ( N `  y )  +  ( abs `  x
) )  +  1 )  /  r ) ) ) )
166 simplr 731 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  r  e.  RR+ )
167102rpred 10406 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  r
)  e.  RR )
168167ltp1d 9703 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  r
)  <  ( (
( ( ( N `
 y )  +  ( abs `  x
) )  +  1 )  /  r )  +  1 ) )
169102rpcnd 10408 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  r
)  e.  CC )
170169, 153addcomd 9030 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  r )  +  1 )  =  ( 1  +  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  r ) ) )
171168, 170breqtrd 4063 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  r
)  <  ( 1  +  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  r
) ) )
17257, 166, 105, 171ltdiv23d 10462 . . . . . . . . . 10  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  /  (
1  +  ( ( ( ( N `  y )  +  ( abs `  x ) )  +  1 )  /  r ) ) )  <  r )
173165, 172eqbrtrd 4059 . . . . . . . . 9  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( ( N `  y
)  +  ( abs `  x ) )  +  1 )  x.  T
)  <  r )
17448, 60, 50, 159, 173lelttrd 8990 . . . . . . . 8  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( ( x S y ) C ( z S y ) )  +  ( ( z S y ) C ( z S w ) ) )  <  r
)
17541, 48, 50, 52, 174lelttrd 8990 . . . . . . 7  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
( z  e.  CC  /\  w  e.  X )  /\  ( ( x ( abs  o.  -  ) z )  < 
T  /\  ( y C w )  < 
T ) ) )  ->  ( ( x S y ) C ( z S w ) )  <  r
)
176175expr 598 . . . . . 6  |-  ( ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  /\  (
z  e.  CC  /\  w  e.  X )
)  ->  ( (
( x ( abs 
o.  -  ) z
)  <  T  /\  ( y C w )  <  T )  ->  ( ( x S y ) C ( z S w ) )  <  r
) )
177176ralrimivva 2648 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  ->  A. z  e.  CC  A. w  e.  X  ( ( ( x ( abs  o.  -  )
z )  <  T  /\  ( y C w )  <  T )  ->  ( ( x S y ) C ( z S w ) )  <  r
) )
178 breq2 4043 . . . . . . . . 9  |-  ( s  =  T  ->  (
( x ( abs 
o.  -  ) z
)  <  s  <->  ( x
( abs  o.  -  )
z )  <  T
) )
179 breq2 4043 . . . . . . . . 9  |-  ( s  =  T  ->  (
( y C w )  <  s  <->  ( y C w )  < 
T ) )
180178, 179anbi12d 691 . . . . . . . 8  |-  ( s  =  T  ->  (
( ( x ( abs  o.  -  )
z )  <  s  /\  ( y C w )  <  s )  <-> 
( ( x ( abs  o.  -  )
z )  <  T  /\  ( y C w )  <  T ) ) )
181180imbi1d 308 . . . . . . 7  |-  ( s  =  T  ->  (
( ( ( x ( abs  o.  -  ) z )  < 
s  /\  ( y C w )  < 
s )  ->  (
( x S y ) C ( z S w ) )  <  r )  <->  ( (
( x ( abs 
o.  -  ) z
)  <  T  /\  ( y C w )  <  T )  ->  ( ( x S y ) C ( z S w ) )  <  r
) ) )
1821812ralbidv 2598 . . . . . 6  |-  ( s  =  T  ->  ( A. z  e.  CC  A. w  e.  X  ( ( ( x ( abs  o.  -  )
z )  <  s  /\  ( y C w )  <  s )  ->  ( ( x S y ) C ( z S w ) )  <  r
)  <->  A. z  e.  CC  A. w  e.  X  ( ( ( x ( abs  o.  -  )
z )  <  T  /\  ( y C w )  <  T )  ->  ( ( x S y ) C ( z S w ) )  <  r
) ) )
183182rspcev 2897 . . . . 5  |-  ( ( T  e.  RR+  /\  A. z  e.  CC  A. w  e.  X  ( (
( x ( abs 
o.  -  ) z
)  <  T  /\  ( y C w )  <  T )  ->  ( ( x S y ) C ( z S w ) )  <  r
) )  ->  E. s  e.  RR+  A. z  e.  CC  A. w  e.  X  ( ( ( x ( abs  o.  -  ) z )  <  s  /\  (
y C w )  <  s )  -> 
( ( x S y ) C ( z S w ) )  <  r ) )
18426, 177, 183syl2anc 642 . . . 4  |-  ( ( ( x  e.  CC  /\  y  e.  X )  /\  r  e.  RR+ )  ->  E. s  e.  RR+  A. z  e.  CC  A. w  e.  X  (
( ( x ( abs  o.  -  )
z )  <  s  /\  ( y C w )  <  s )  ->  ( ( x S y ) C ( z S w ) )  <  r
) )
185184ralrimiva 2639 . . 3  |-  ( ( x  e.  CC  /\  y  e.  X )  ->  A. r  e.  RR+  E. s  e.  RR+  A. z  e.  CC  A. w  e.  X  ( ( ( x ( abs  o.  -  ) z )  <  s  /\  (
y C w )  <  s )  -> 
( ( x S y ) C ( z S w ) )  <  r ) )
186185rgen2 2652 . 2  |-  A. x  e.  CC  A. y  e.  X  A. r  e.  RR+  E. s  e.  RR+  A. z  e.  CC  A. w  e.  X  (
( ( x ( abs  o.  -  )
z )  <  s  /\  ( y C w )  <  s )  ->  ( ( x S y ) C ( z S w ) )  <  r
)
187 cnxmet 18298 . . 3  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
1882, 27imsxmet 21277 . . . 4  |-  ( U  e.  NrmCVec  ->  C  e.  ( * Met `  X
) )
1891, 188ax-mp 8 . . 3  |-  C  e.  ( * Met `  X
)
190 smcn.k . . . . 5  |-  K  =  ( TopOpen ` fld )
191190cnfldtopn 18307 . . . 4  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
192 smcn.j . . . 4  |-  J  =  ( MetOpen `  C )
193191, 192, 192txmetcn 18110 . . 3  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  C  e.  ( * Met `  X )  /\  C  e.  ( * Met `  X ) )  ->  ( S  e.  ( ( K  tX  J )  Cn  J
)  <->  ( S :
( CC  X.  X
) --> X  /\  A. x  e.  CC  A. y  e.  X  A. r  e.  RR+  E. s  e.  RR+  A. z  e.  CC  A. w  e.  X  ( ( ( x ( abs  o.  -  )
z )  <  s  /\  ( y C w )  <  s )  ->  ( ( x S y ) C ( z S w ) )  <  r
) ) ) )
194187, 189, 189, 193mp3an 1277 . 2  |-  ( S  e.  ( ( K 
tX  J )  Cn  J )  <->  ( S : ( CC  X.  X ) --> X  /\  A. x  e.  CC  A. y  e.  X  A. r  e.  RR+  E. s  e.  RR+  A. z  e.  CC  A. w  e.  X  ( ( ( x ( abs  o.  -  ) z )  <  s  /\  (
y C w )  <  s )  -> 
( ( x S y ) C ( z S w ) )  <  r ) ) )
1955, 186, 194mpbir2an 886 1  |-  S  e.  ( ( K  tX  J )  Cn  J
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   class class class wbr 4039    X. cxp 4703    o. ccom 4709   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053   -ucneg 9054    / cdiv 9439   RR+crp 10370   abscabs 11735   TopOpenctopn 13342   * Metcxmt 16385   Metcme 16386   MetOpencmopn 16388  ℂfldccnfld 16393    Cn ccn 16970    tX ctx 17271   NrmCVeccnv 21156   +vcpv 21157   BaseSetcba 21158   .s
OLDcns 21159   -vcnsb 21161   normCVcnmcv 21162   IndMetcims 21163
This theorem is referenced by:  smcn  21287
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-icc 10679  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cn 16973  df-cnp 16974  df-tx 17273  df-hmeo 17462  df-xms 17901  df-tms 17903  df-grpo 20874  df-gid 20875  df-ginv 20876  df-gdiv 20877  df-ablo 20965  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-vs 21171  df-nmcv 21172  df-ims 21173
  Copyright terms: Public domain W3C validator