MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smobeth Unicode version

Theorem smobeth 8208
Description: The beth function is strictly monotone. This function is not strictly the beth function, but rather bethA is the same as  ( card `  ( R1 `  ( om  +o  A ) ) ), since conventionally we start counting at the first infinite level, and ignore the finite levels. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 2-Jun-2015.)
Assertion
Ref Expression
smobeth  |-  Smo  ( card  o.  R1 )

Proof of Theorem smobeth
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardf2 7576 . . . . . . 7  |-  card : {
x  |  E. y  e.  On  y  ~~  x }
--> On
2 ffun 5391 . . . . . . 7  |-  ( card
: { x  |  E. y  e.  On  y  ~~  x } --> On  ->  Fun 
card )
31, 2ax-mp 8 . . . . . 6  |-  Fun  card
4 r1fnon 7439 . . . . . . 7  |-  R1  Fn  On
5 fnfun 5341 . . . . . . 7  |-  ( R1  Fn  On  ->  Fun  R1 )
64, 5ax-mp 8 . . . . . 6  |-  Fun  R1
7 funco 5292 . . . . . 6  |-  ( ( Fun  card  /\  Fun  R1 )  ->  Fun  ( card  o.  R1 ) )
83, 6, 7mp2an 653 . . . . 5  |-  Fun  ( card  o.  R1 )
9 funfn 5283 . . . . 5  |-  ( Fun  ( card  o.  R1 ) 
<->  ( card  o.  R1 )  Fn  dom  ( card 
o.  R1 ) )
108, 9mpbi 199 . . . 4  |-  ( card 
o.  R1 )  Fn 
dom  ( card  o.  R1 )
11 rnco 5179 . . . . 5  |-  ran  ( card  o.  R1 )  =  ran  ( card  |`  ran  R1 )
12 resss 4979 . . . . . . 7  |-  ( card  |` 
ran  R1 )  C_  card
13 rnss 4907 . . . . . . 7  |-  ( (
card  |`  ran  R1 ) 
C_  card  ->  ran  ( card  |` 
ran  R1 )  C_  ran  card )
1412, 13ax-mp 8 . . . . . 6  |-  ran  ( card 
|`  ran  R1 )  C_ 
ran  card
15 frn 5395 . . . . . . 7  |-  ( card
: { x  |  E. y  e.  On  y  ~~  x } --> On  ->  ran 
card  C_  On )
161, 15ax-mp 8 . . . . . 6  |-  ran  card  C_  On
1714, 16sstri 3188 . . . . 5  |-  ran  ( card 
|`  ran  R1 )  C_  On
1811, 17eqsstri 3208 . . . 4  |-  ran  ( card  o.  R1 )  C_  On
19 df-f 5259 . . . 4  |-  ( (
card  o.  R1 ) : dom  ( card  o.  R1 )
--> On  <->  ( ( card 
o.  R1 )  Fn 
dom  ( card  o.  R1 )  /\  ran  ( card 
o.  R1 )  C_  On ) )
2010, 18, 19mpbir2an 886 . . 3  |-  ( card 
o.  R1 ) : dom  ( card  o.  R1 )
--> On
21 dmco 5181 . . . 4  |-  dom  ( card  o.  R1 )  =  ( `' R1 " dom  card )
2221feq2i 5384 . . 3  |-  ( (
card  o.  R1 ) : dom  ( card  o.  R1 )
--> On  <->  ( card  o.  R1 ) : ( `' R1 " dom  card ) --> On )
2320, 22mpbi 199 . 2  |-  ( card 
o.  R1 ) : ( `' R1 " dom  card ) --> On
24 elpreima 5645 . . . . . . . . 9  |-  ( R1  Fn  On  ->  (
x  e.  ( `' R1 " dom  card ) 
<->  ( x  e.  On  /\  ( R1 `  x
)  e.  dom  card ) ) )
254, 24ax-mp 8 . . . . . . . 8  |-  ( x  e.  ( `' R1 " dom  card )  <->  ( x  e.  On  /\  ( R1
`  x )  e. 
dom  card ) )
2625simplbi 446 . . . . . . 7  |-  ( x  e.  ( `' R1 " dom  card )  ->  x  e.  On )
27 onelon 4417 . . . . . . 7  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  e.  On )
2826, 27sylan 457 . . . . . 6  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  y  e.  On )
2925simprbi 450 . . . . . . . 8  |-  ( x  e.  ( `' R1 " dom  card )  ->  ( R1 `  x )  e. 
dom  card )
3029adantr 451 . . . . . . 7  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( R1 `  x )  e.  dom  card )
31 r1ord2 7453 . . . . . . . . 9  |-  ( x  e.  On  ->  (
y  e.  x  -> 
( R1 `  y
)  C_  ( R1 `  x ) ) )
3231imp 418 . . . . . . . 8  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( R1 `  y
)  C_  ( R1 `  x ) )
3326, 32sylan 457 . . . . . . 7  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( R1 `  y )  C_  ( R1 `  x ) )
34 ssnum 7666 . . . . . . 7  |-  ( ( ( R1 `  x
)  e.  dom  card  /\  ( R1 `  y
)  C_  ( R1 `  x ) )  -> 
( R1 `  y
)  e.  dom  card )
3530, 33, 34syl2anc 642 . . . . . 6  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( R1 `  y )  e.  dom  card )
36 elpreima 5645 . . . . . . 7  |-  ( R1  Fn  On  ->  (
y  e.  ( `' R1 " dom  card ) 
<->  ( y  e.  On  /\  ( R1 `  y
)  e.  dom  card ) ) )
374, 36ax-mp 8 . . . . . 6  |-  ( y  e.  ( `' R1 " dom  card )  <->  ( y  e.  On  /\  ( R1
`  y )  e. 
dom  card ) )
3828, 35, 37sylanbrc 645 . . . . 5  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  y  e.  ( `' R1 " dom  card ) )
3938rgen2 2639 . . . 4  |-  A. x  e.  ( `' R1 " dom  card ) A. y  e.  x  y  e.  ( `' R1 " dom  card )
40 dftr5 4116 . . . 4  |-  ( Tr  ( `' R1 " dom  card )  <->  A. x  e.  ( `' R1 " dom  card ) A. y  e.  x  y  e.  ( `' R1 " dom  card ) )
4139, 40mpbir 200 . . 3  |-  Tr  ( `' R1 " dom  card )
42 cnvimass 5033 . . . . 5  |-  ( `' R1 " dom  card )  C_  dom  R1
43 dffn2 5390 . . . . . . 7  |-  ( R1  Fn  On  <->  R1 : On
--> _V )
444, 43mpbi 199 . . . . . 6  |-  R1 : On
--> _V
4544fdmi 5394 . . . . 5  |-  dom  R1  =  On
4642, 45sseqtri 3210 . . . 4  |-  ( `' R1 " dom  card )  C_  On
47 epweon 4575 . . . 4  |-  _E  We  On
48 wess 4380 . . . 4  |-  ( ( `' R1 " dom  card )  C_  On  ->  (  _E  We  On  ->  _E  We  ( `' R1 " dom  card ) ) )
4946, 47, 48mp2 17 . . 3  |-  _E  We  ( `' R1 " dom  card )
50 df-ord 4395 . . 3  |-  ( Ord  ( `' R1 " dom  card )  <->  ( Tr  ( `' R1 " dom  card )  /\  _E  We  ( `' R1 " dom  card ) ) )
5141, 49, 50mpbir2an 886 . 2  |-  Ord  ( `' R1 " dom  card )
52 r1sdom 7446 . . . . . . 7  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( R1 `  y
)  ~<  ( R1 `  x ) )
5326, 52sylan 457 . . . . . 6  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( R1 `  y )  ~<  ( R1 `  x ) )
54 cardsdom2 7621 . . . . . . 7  |-  ( ( ( R1 `  y
)  e.  dom  card  /\  ( R1 `  x
)  e.  dom  card )  ->  ( ( card `  ( R1 `  y
) )  e.  (
card `  ( R1 `  x ) )  <->  ( R1 `  y )  ~<  ( R1 `  x ) ) )
5535, 30, 54syl2anc 642 . . . . . 6  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( ( card `  ( R1 `  y ) )  e.  ( card `  ( R1 `  x ) )  <-> 
( R1 `  y
)  ~<  ( R1 `  x ) ) )
5653, 55mpbird 223 . . . . 5  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( card `  ( R1 `  y
) )  e.  (
card `  ( R1 `  x ) ) )
57 fvco2 5594 . . . . . . 7  |-  ( ( R1  Fn  On  /\  y  e.  On )  ->  ( ( card  o.  R1 ) `  y )  =  ( card `  ( R1 `  y ) ) )
584, 28, 57sylancr 644 . . . . . 6  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( ( card  o.  R1 ) `  y )  =  (
card `  ( R1 `  y ) ) )
5926adantr 451 . . . . . . 7  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  x  e.  On )
60 fvco2 5594 . . . . . . 7  |-  ( ( R1  Fn  On  /\  x  e.  On )  ->  ( ( card  o.  R1 ) `  x )  =  ( card `  ( R1 `  x ) ) )
614, 59, 60sylancr 644 . . . . . 6  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( ( card  o.  R1 ) `  x )  =  (
card `  ( R1 `  x ) ) )
6258, 61eleq12d 2351 . . . . 5  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( (
( card  o.  R1 ) `  y )  e.  ( ( card  o.  R1 ) `  x )  <->  (
card `  ( R1 `  y ) )  e.  ( card `  ( R1 `  x ) ) ) )
6356, 62mpbird 223 . . . 4  |-  ( ( x  e.  ( `' R1 " dom  card )  /\  y  e.  x
)  ->  ( ( card  o.  R1 ) `  y )  e.  ( ( card  o.  R1 ) `  x )
)
6463ex 423 . . 3  |-  ( x  e.  ( `' R1 " dom  card )  ->  (
y  e.  x  -> 
( ( card  o.  R1 ) `  y )  e.  ( ( card  o.  R1 ) `  x )
) )
6564adantl 452 . 2  |-  ( ( y  e.  ( `' R1 " dom  card )  /\  x  e.  ( `' R1 " dom  card ) )  ->  (
y  e.  x  -> 
( ( card  o.  R1 ) `  y )  e.  ( ( card  o.  R1 ) `  x )
) )
6623, 51, 65, 21issmo 6365 1  |-  Smo  ( card  o.  R1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   class class class wbr 4023   Tr wtr 4113    _E cep 4303    We wwe 4351   Ord word 4391   Oncon0 4392   `'ccnv 4688   dom cdm 4689   ran crn 4690    |` cres 4691   "cima 4692    o. ccom 4693   Fun wfun 5249    Fn wfn 5250   -->wf 5251   ` cfv 5255   Smo wsmo 6362    ~~ cen 6860    ~< csdm 6862   R1cr1 7434   cardccrd 7568
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 6304  df-smo 6363  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-r1 7436  df-card 7572
  Copyright terms: Public domain W3C validator