MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoel Structured version   Unicode version

Theorem smoel 6614
Description: If  x is less than  y then a strictly monotone function's value will be strictly less at  x than at  y. (Contributed by Andrew Salmon, 22-Nov-2011.)
Assertion
Ref Expression
smoel  |-  ( ( Smo  B  /\  A  e.  dom  B  /\  C  e.  A )  ->  ( B `  C )  e.  ( B `  A
) )

Proof of Theorem smoel
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smodm 6605 . . . . 5  |-  ( Smo 
B  ->  Ord  dom  B
)
2 ordtr1 4616 . . . . . . 7  |-  ( Ord 
dom  B  ->  ( ( C  e.  A  /\  A  e.  dom  B )  ->  C  e.  dom  B ) )
32ancomsd 441 . . . . . 6  |-  ( Ord 
dom  B  ->  ( ( A  e.  dom  B  /\  C  e.  A
)  ->  C  e.  dom  B ) )
43expdimp 427 . . . . 5  |-  ( ( Ord  dom  B  /\  A  e.  dom  B )  ->  ( C  e.  A  ->  C  e.  dom  B ) )
51, 4sylan 458 . . . 4  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( C  e.  A  ->  C  e.  dom  B
) )
6 df-smo 6600 . . . . . 6  |-  ( Smo 
B  <->  ( B : dom  B --> On  /\  Ord  dom 
B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y
) ) ) )
7 eleq1 2495 . . . . . . . . . . 11  |-  ( x  =  C  ->  (
x  e.  y  <->  C  e.  y ) )
8 fveq2 5720 . . . . . . . . . . . 12  |-  ( x  =  C  ->  ( B `  x )  =  ( B `  C ) )
98eleq1d 2501 . . . . . . . . . . 11  |-  ( x  =  C  ->  (
( B `  x
)  e.  ( B `
 y )  <->  ( B `  C )  e.  ( B `  y ) ) )
107, 9imbi12d 312 . . . . . . . . . 10  |-  ( x  =  C  ->  (
( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  ( C  e.  y  ->  ( B `  C )  e.  ( B `  y ) ) ) )
11 eleq2 2496 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( C  e.  y  <->  C  e.  A ) )
12 fveq2 5720 . . . . . . . . . . . 12  |-  ( y  =  A  ->  ( B `  y )  =  ( B `  A ) )
1312eleq2d 2502 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( B `  C
)  e.  ( B `
 y )  <->  ( B `  C )  e.  ( B `  A ) ) )
1411, 13imbi12d 312 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( C  e.  y  ->  ( B `  C )  e.  ( B `  y ) )  <->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
1510, 14rspc2v 3050 . . . . . . . . 9  |-  ( ( C  e.  dom  B  /\  A  e.  dom  B )  ->  ( A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  -> 
( B `  x
)  e.  ( B `
 y ) )  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
1615ancoms 440 . . . . . . . 8  |-  ( ( A  e.  dom  B  /\  C  e.  dom  B )  ->  ( A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  -> 
( B `  x
)  e.  ( B `
 y ) )  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
1716com12 29 . . . . . . 7  |-  ( A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  -> 
( B `  x
)  e.  ( B `
 y ) )  ->  ( ( A  e.  dom  B  /\  C  e.  dom  B )  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
18173ad2ant3 980 . . . . . 6  |-  ( ( B : dom  B --> On  /\  Ord  dom  B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) )  ->  (
( A  e.  dom  B  /\  C  e.  dom  B )  ->  ( C  e.  A  ->  ( B `
 C )  e.  ( B `  A
) ) ) )
196, 18sylbi 188 . . . . 5  |-  ( Smo 
B  ->  ( ( A  e.  dom  B  /\  C  e.  dom  B )  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
2019expdimp 427 . . . 4  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( C  e.  dom  B  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
215, 20syld 42 . . 3  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( C  e.  A  ->  ( C  e.  A  ->  ( B `  C
)  e.  ( B `
 A ) ) ) )
2221pm2.43d 46 . 2  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( C  e.  A  ->  ( B `  C
)  e.  ( B `
 A ) ) )
23223impia 1150 1  |-  ( ( Smo  B  /\  A  e.  dom  B  /\  C  e.  A )  ->  ( B `  C )  e.  ( B `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   Ord word 4572   Oncon0 4573   dom cdm 4870   -->wf 5442   ` cfv 5446   Smo wsmo 6599
This theorem is referenced by:  smoiun  6615  smoel2  6617
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-tr 4295  df-ord 4576  df-iota 5410  df-fv 5454  df-smo 6600
  Copyright terms: Public domain W3C validator