Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoel2 Structured version   Unicode version

Theorem smoel2 6617
 Description: A strictly monotone ordinal function preserves the epsilon relation. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smoel2

Proof of Theorem smoel2
StepHypRef Expression
1 fndm 5536 . . . . . 6
21eleq2d 2502 . . . . 5
32anbi1d 686 . . . 4
43biimprd 215 . . 3
5 smoel 6614 . . . 4
653expib 1156 . . 3
74, 6sylan9 639 . 2
87imp 419 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wcel 1725   cdm 4870   wfn 5441  cfv 5446   wsmo 6599 This theorem is referenced by:  smo11  6618  smoord  6619  smogt  6621  cofsmo  8141 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-tr 4295  df-ord 4576  df-iota 5410  df-fn 5449  df-fv 5454  df-smo 6600
 Copyright terms: Public domain W3C validator