MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoel2 Unicode version

Theorem smoel2 6561
Description: A strictly monotone ordinal function preserves the epsilon relation. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smoel2  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( B  e.  A  /\  C  e.  B
) )  ->  ( F `  C )  e.  ( F `  B
) )

Proof of Theorem smoel2
StepHypRef Expression
1 fndm 5484 . . . . . 6  |-  ( F  Fn  A  ->  dom  F  =  A )
21eleq2d 2454 . . . . 5  |-  ( F  Fn  A  ->  ( B  e.  dom  F  <->  B  e.  A ) )
32anbi1d 686 . . . 4  |-  ( F  Fn  A  ->  (
( B  e.  dom  F  /\  C  e.  B
)  <->  ( B  e.  A  /\  C  e.  B ) ) )
43biimprd 215 . . 3  |-  ( F  Fn  A  ->  (
( B  e.  A  /\  C  e.  B
)  ->  ( B  e.  dom  F  /\  C  e.  B ) ) )
5 smoel 6558 . . . 4  |-  ( ( Smo  F  /\  B  e.  dom  F  /\  C  e.  B )  ->  ( F `  C )  e.  ( F `  B
) )
653expib 1156 . . 3  |-  ( Smo 
F  ->  ( ( B  e.  dom  F  /\  C  e.  B )  ->  ( F `  C
)  e.  ( F `
 B ) ) )
74, 6sylan9 639 . 2  |-  ( ( F  Fn  A  /\  Smo  F )  ->  (
( B  e.  A  /\  C  e.  B
)  ->  ( F `  C )  e.  ( F `  B ) ) )
87imp 419 1  |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( B  e.  A  /\  C  e.  B
) )  ->  ( F `  C )  e.  ( F `  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1717   dom cdm 4818    Fn wfn 5389   ` cfv 5394   Smo wsmo 6543
This theorem is referenced by:  smo11  6562  smoord  6563  smogt  6565  cofsmo  8082
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-tr 4244  df-ord 4525  df-iota 5358  df-fn 5397  df-fv 5402  df-smo 6544
  Copyright terms: Public domain W3C validator