MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoeq Unicode version

Theorem smoeq 6409
Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smoeq  |-  ( A  =  B  ->  ( Smo  A  <->  Smo  B ) )

Proof of Theorem smoeq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( A  =  B  ->  A  =  B )
2 dmeq 4916 . . . 4  |-  ( A  =  B  ->  dom  A  =  dom  B )
31, 2feq12d 5418 . . 3  |-  ( A  =  B  ->  ( A : dom  A --> On  <->  B : dom  B --> On ) )
4 ordeq 4436 . . . 4  |-  ( dom 
A  =  dom  B  ->  ( Ord  dom  A  <->  Ord 
dom  B ) )
52, 4syl 15 . . 3  |-  ( A  =  B  ->  ( Ord  dom  A  <->  Ord  dom  B
) )
6 fveq1 5562 . . . . . . 7  |-  ( A  =  B  ->  ( A `  x )  =  ( B `  x ) )
7 fveq1 5562 . . . . . . 7  |-  ( A  =  B  ->  ( A `  y )  =  ( B `  y ) )
86, 7eleq12d 2384 . . . . . 6  |-  ( A  =  B  ->  (
( A `  x
)  e.  ( A `
 y )  <->  ( B `  x )  e.  ( B `  y ) ) )
98imbi2d 307 . . . . 5  |-  ( A  =  B  ->  (
( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  <->  ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
1092ralbidv 2619 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  <->  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
112raleqdv 2776 . . . . 5  |-  ( A  =  B  ->  ( A. y  e.  dom  A ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
1211ralbidv 2597 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  A. x  e.  dom  A A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
132raleqdv 2776 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
1410, 12, 133bitrd 270 . . 3  |-  ( A  =  B  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  <->  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) ) )
153, 5, 143anbi123d 1252 . 2  |-  ( A  =  B  ->  (
( A : dom  A --> On  /\  Ord  dom  A  /\  A. x  e. 
dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) )  <->  ( B : dom  B --> On  /\  Ord  dom  B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  -> 
( B `  x
)  e.  ( B `
 y ) ) ) ) )
16 df-smo 6405 . 2  |-  ( Smo 
A  <->  ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
17 df-smo 6405 . 2  |-  ( Smo 
B  <->  ( B : dom  B --> On  /\  Ord  dom 
B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y
) ) ) )
1815, 16, 173bitr4g 279 1  |-  ( A  =  B  ->  ( Smo  A  <->  Smo  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1633    e. wcel 1701   A.wral 2577   Ord word 4428   Oncon0 4429   dom cdm 4726   -->wf 5288   ` cfv 5292   Smo wsmo 6404
This theorem is referenced by:  smores3  6412  smo0  6417  cofsmo  7940  cfsmolem  7941  alephsing  7947
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-br 4061  df-opab 4115  df-tr 4151  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-fv 5300  df-smo 6405
  Copyright terms: Public domain W3C validator