Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  smofvon Unicode version

Theorem smofvon 6392
 Description: If is a strictly monotone ordinal function, and is in the domain of , then the value of the function at is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.)
Assertion
Ref Expression
smofvon

Proof of Theorem smofvon
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-smo 6379 . . 3
21simp1bi 970 . 2
3 ffvelrn 5679 . 2
42, 3sylan 457 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 358   wcel 1696  wral 2556   word 4407  con0 4408   cdm 4705  wf 5267  cfv 5271   wsmo 6378 This theorem is referenced by:  smoiun  6394 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-smo 6379
 Copyright terms: Public domain W3C validator