MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smofvon Unicode version

Theorem smofvon 6376
Description: If  B is a strictly monotone ordinal function, and  A is in the domain of  B, then the value of the function at 
A is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.)
Assertion
Ref Expression
smofvon  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( B `  A
)  e.  On )

Proof of Theorem smofvon
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-smo 6363 . . 3  |-  ( Smo 
B  <->  ( B : dom  B --> On  /\  Ord  dom 
B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y
) ) ) )
21simp1bi 970 . 2  |-  ( Smo 
B  ->  B : dom  B --> On )
3 ffvelrn 5663 . 2  |-  ( ( B : dom  B --> On  /\  A  e.  dom  B )  ->  ( B `  A )  e.  On )
42, 3sylan 457 1  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( B `  A
)  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1684   A.wral 2543   Ord word 4391   Oncon0 4392   dom cdm 4689   -->wf 5251   ` cfv 5255   Smo wsmo 6362
This theorem is referenced by:  smoiun  6378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-smo 6363
  Copyright terms: Public domain W3C validator