MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smofvon2 Structured version   Unicode version

Theorem smofvon2 6610
Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smofvon2  |-  ( Smo 
F  ->  ( F `  B )  e.  On )

Proof of Theorem smofvon2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsmo2 6601 . . . 4  |-  ( Smo 
F  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
21simp1bi 972 . . 3  |-  ( Smo 
F  ->  F : dom  F --> On )
3 ffvelrn 5860 . . . 4  |-  ( ( F : dom  F --> On  /\  B  e.  dom  F )  ->  ( F `  B )  e.  On )
43expcom 425 . . 3  |-  ( B  e.  dom  F  -> 
( F : dom  F --> On  ->  ( F `  B )  e.  On ) )
52, 4syl5 30 . 2  |-  ( B  e.  dom  F  -> 
( Smo  F  ->  ( F `  B )  e.  On ) )
6 ndmfv 5747 . . . 4  |-  ( -.  B  e.  dom  F  ->  ( F `  B
)  =  (/) )
7 0elon 4626 . . . 4  |-  (/)  e.  On
86, 7syl6eqel 2523 . . 3  |-  ( -.  B  e.  dom  F  ->  ( F `  B
)  e.  On )
98a1d 23 . 2  |-  ( -.  B  e.  dom  F  ->  ( Smo  F  -> 
( F `  B
)  e.  On ) )
105, 9pm2.61i 158 1  |-  ( Smo 
F  ->  ( F `  B )  e.  On )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 1725   A.wral 2697   (/)c0 3620   Ord word 4572   Oncon0 4573   dom cdm 4870   -->wf 5442   ` cfv 5446   Smo wsmo 6599
This theorem is referenced by:  smo11  6618  smoord  6619  smoword  6620  smogt  6621
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-tr 4295  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-smo 6600
  Copyright terms: Public domain W3C validator