MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smores Unicode version

Theorem smores 6385
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
smores  |-  ( ( Smo  A  /\  B  e.  dom  A )  ->  Smo  ( A  |`  B ) )

Proof of Theorem smores
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funres 5309 . . . . . . . 8  |-  ( Fun 
A  ->  Fun  ( A  |`  B ) )
2 funfn 5299 . . . . . . . 8  |-  ( Fun 
A  <->  A  Fn  dom  A )
3 funfn 5299 . . . . . . . 8  |-  ( Fun  ( A  |`  B )  <-> 
( A  |`  B )  Fn  dom  ( A  |`  B ) )
41, 2, 33imtr3i 256 . . . . . . 7  |-  ( A  Fn  dom  A  -> 
( A  |`  B )  Fn  dom  ( A  |`  B ) )
5 resss 4995 . . . . . . . . 9  |-  ( A  |`  B )  C_  A
6 rnss 4923 . . . . . . . . 9  |-  ( ( A  |`  B )  C_  A  ->  ran  ( A  |`  B )  C_  ran  A )
75, 6ax-mp 8 . . . . . . . 8  |-  ran  ( A  |`  B )  C_  ran  A
8 sstr 3200 . . . . . . . 8  |-  ( ( ran  ( A  |`  B )  C_  ran  A  /\  ran  A  C_  On )  ->  ran  ( A  |`  B )  C_  On )
97, 8mpan 651 . . . . . . 7  |-  ( ran 
A  C_  On  ->  ran  ( A  |`  B ) 
C_  On )
104, 9anim12i 549 . . . . . 6  |-  ( ( A  Fn  dom  A  /\  ran  A  C_  On )  ->  ( ( A  |`  B )  Fn  dom  ( A  |`  B )  /\  ran  ( A  |`  B )  C_  On ) )
11 df-f 5275 . . . . . 6  |-  ( A : dom  A --> On  <->  ( A  Fn  dom  A  /\  ran  A 
C_  On ) )
12 df-f 5275 . . . . . 6  |-  ( ( A  |`  B ) : dom  ( A  |`  B ) --> On  <->  ( ( A  |`  B )  Fn 
dom  ( A  |`  B )  /\  ran  ( A  |`  B ) 
C_  On ) )
1310, 11, 123imtr4i 257 . . . . 5  |-  ( A : dom  A --> On  ->  ( A  |`  B ) : dom  ( A  |`  B ) --> On )
1413a1i 10 . . . 4  |-  ( B  e.  dom  A  -> 
( A : dom  A --> On  ->  ( A  |`  B ) : dom  ( A  |`  B ) --> On ) )
15 ordelord 4430 . . . . . . 7  |-  ( ( Ord  dom  A  /\  B  e.  dom  A )  ->  Ord  B )
1615expcom 424 . . . . . 6  |-  ( B  e.  dom  A  -> 
( Ord  dom  A  ->  Ord  B ) )
17 ordin 4438 . . . . . . 7  |-  ( ( Ord  B  /\  Ord  dom 
A )  ->  Ord  ( B  i^i  dom  A
) )
1817ex 423 . . . . . 6  |-  ( Ord 
B  ->  ( Ord  dom 
A  ->  Ord  ( B  i^i  dom  A )
) )
1916, 18syli 33 . . . . 5  |-  ( B  e.  dom  A  -> 
( Ord  dom  A  ->  Ord  ( B  i^i  dom  A ) ) )
20 dmres 4992 . . . . . 6  |-  dom  ( A  |`  B )  =  ( B  i^i  dom  A )
21 ordeq 4415 . . . . . 6  |-  ( dom  ( A  |`  B )  =  ( B  i^i  dom 
A )  ->  ( Ord  dom  ( A  |`  B )  <->  Ord  ( B  i^i  dom  A )
) )
2220, 21ax-mp 8 . . . . 5  |-  ( Ord 
dom  ( A  |`  B )  <->  Ord  ( B  i^i  dom  A )
)
2319, 22syl6ibr 218 . . . 4  |-  ( B  e.  dom  A  -> 
( Ord  dom  A  ->  Ord  dom  ( A  |`  B ) ) )
24 dmss 4894 . . . . . . . . 9  |-  ( ( A  |`  B )  C_  A  ->  dom  ( A  |`  B )  C_  dom  A )
255, 24ax-mp 8 . . . . . . . 8  |-  dom  ( A  |`  B )  C_  dom  A
26 ssralv 3250 . . . . . . . 8  |-  ( dom  ( A  |`  B ) 
C_  dom  A  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
2725, 26ax-mp 8 . . . . . . 7  |-  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
28 ssralv 3250 . . . . . . . . 9  |-  ( dom  ( A  |`  B ) 
C_  dom  A  ->  ( A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  ->  A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
2925, 28ax-mp 8 . . . . . . . 8  |-  ( A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) )  ->  A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
3029ralimi 2631 . . . . . . 7  |-  ( A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) )
3127, 30syl 15 . . . . . 6  |-  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
32 inss1 3402 . . . . . . . . . . . . 13  |-  ( B  i^i  dom  A )  C_  B
3320, 32eqsstri 3221 . . . . . . . . . . . 12  |-  dom  ( A  |`  B )  C_  B
34 simpl 443 . . . . . . . . . . . 12  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  ->  x  e.  dom  ( A  |`  B ) )
3533, 34sseldi 3191 . . . . . . . . . . 11  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  ->  x  e.  B )
36 fvres 5558 . . . . . . . . . . 11  |-  ( x  e.  B  ->  (
( A  |`  B ) `
 x )  =  ( A `  x
) )
3735, 36syl 15 . . . . . . . . . 10  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
( ( A  |`  B ) `  x
)  =  ( A `
 x ) )
38 simpr 447 . . . . . . . . . . . 12  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
y  e.  dom  ( A  |`  B ) )
3933, 38sseldi 3191 . . . . . . . . . . 11  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
y  e.  B )
40 fvres 5558 . . . . . . . . . . 11  |-  ( y  e.  B  ->  (
( A  |`  B ) `
 y )  =  ( A `  y
) )
4139, 40syl 15 . . . . . . . . . 10  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
( ( A  |`  B ) `  y
)  =  ( A `
 y ) )
4237, 41eleq12d 2364 . . . . . . . . 9  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
( ( ( A  |`  B ) `  x
)  e.  ( ( A  |`  B ) `  y )  <->  ( A `  x )  e.  ( A `  y ) ) )
4342imbi2d 307 . . . . . . . 8  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
( ( x  e.  y  ->  ( ( A  |`  B ) `  x )  e.  ( ( A  |`  B ) `
 y ) )  <-> 
( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) ) )
4443ralbidva 2572 . . . . . . 7  |-  ( x  e.  dom  ( A  |`  B )  ->  ( A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( ( A  |`  B ) `  x
)  e.  ( ( A  |`  B ) `  y ) )  <->  A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
4544ralbiia 2588 . . . . . 6  |-  ( A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  (
( A  |`  B ) `
 x )  e.  ( ( A  |`  B ) `  y
) )  <->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) )
4631, 45sylibr 203 . . . . 5  |-  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( ( A  |`  B ) `  x
)  e.  ( ( A  |`  B ) `  y ) ) )
4746a1i 10 . . . 4  |-  ( B  e.  dom  A  -> 
( A. x  e. 
dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  (
( A  |`  B ) `
 x )  e.  ( ( A  |`  B ) `  y
) ) ) )
4814, 23, 473anim123d 1259 . . 3  |-  ( B  e.  dom  A  -> 
( ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) )  -> 
( ( A  |`  B ) : dom  ( A  |`  B ) --> On  /\  Ord  dom  ( A  |`  B )  /\  A. x  e. 
dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  (
( A  |`  B ) `
 x )  e.  ( ( A  |`  B ) `  y
) ) ) ) )
49 df-smo 6379 . . 3  |-  ( Smo 
A  <->  ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
50 df-smo 6379 . . 3  |-  ( Smo  ( A  |`  B )  <-> 
( ( A  |`  B ) : dom  ( A  |`  B ) --> On  /\  Ord  dom  ( A  |`  B )  /\  A. x  e. 
dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  (
( A  |`  B ) `
 x )  e.  ( ( A  |`  B ) `  y
) ) ) )
5148, 49, 503imtr4g 261 . 2  |-  ( B  e.  dom  A  -> 
( Smo  A  ->  Smo  ( A  |`  B ) ) )
5251impcom 419 1  |-  ( ( Smo  A  /\  B  e.  dom  A )  ->  Smo  ( A  |`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556    i^i cin 3164    C_ wss 3165   Ord word 4407   Oncon0 4408   dom cdm 4705   ran crn 4706    |` cres 4707   Fun wfun 5265    Fn wfn 5266   -->wf 5267   ` cfv 5271   Smo wsmo 6378
This theorem is referenced by:  smores3  6386  alephsing  7918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-smo 6379
  Copyright terms: Public domain W3C validator