MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smucl Unicode version

Theorem smucl 12691
Description: The product of two sequences is a sequence. (Contributed by Mario Carneiro, 19-Sep-2016.)
Assertion
Ref Expression
smucl  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0 )  ->  ( A smul  B )  C_  NN0 )

Proof of Theorem smucl
Dummy variables  k  m  n  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3271 . 2  |-  { k  e.  NN0  |  k  e.  (  seq  0
( ( p  e. 
~P NN0 ,  m  e. 
NN0  |->  ( p sadd  {
n  e.  NN0  | 
( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  (
k  +  1 ) ) }  C_  NN0
2 simpl 443 . . . 4  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0 )  ->  A  C_ 
NN0 )
3 simpr 447 . . . 4  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0 )  ->  B  C_ 
NN0 )
4 eqid 2296 . . . 4  |-  seq  0
( ( p  e. 
~P NN0 ,  m  e. 
NN0  |->  ( p sadd  {
n  e.  NN0  | 
( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )  =  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
52, 3, 4smufval 12684 . . 3  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0 )  ->  ( A smul  B )  =  {
k  e.  NN0  | 
k  e.  (  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  (
k  +  1 ) ) } )
65sseq1d 3218 . 2  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0 )  ->  (
( A smul  B )  C_ 
NN0 
<->  { k  e.  NN0  |  k  e.  (  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  (
k  +  1 ) ) }  C_  NN0 )
)
71, 6mpbiri 224 1  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0 )  ->  ( A smul  B )  C_  NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   {crab 2560    C_ wss 3165   (/)c0 3468   ifcif 3578   ~Pcpw 3638    e. cmpt 4093   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   0cc0 8753   1c1 8754    + caddc 8756    - cmin 9053   NN0cn0 9981    seq cseq 11062   sadd csad 12627   smul csmu 12628
This theorem is referenced by:  smu01lem  12692  smumul  12700
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-i2m1 8821  ax-1ne0 8822  ax-rrecex 8825  ax-cnre 8826
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-recs 6404  df-rdg 6439  df-nn 9763  df-n0 9982  df-seq 11063  df-smu 12683
  Copyright terms: Public domain W3C validator