MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smueqlem Structured version   Unicode version

Theorem smueqlem 12994
Description: Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016.)
Hypotheses
Ref Expression
smueq.a  |-  ( ph  ->  A  C_  NN0 )
smueq.b  |-  ( ph  ->  B  C_  NN0 )
smueq.n  |-  ( ph  ->  N  e.  NN0 )
smueq.p  |-  P  =  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
smueq.q  |-  Q  =  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  ( B  i^i  ( 0..^ N ) ) ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
Assertion
Ref Expression
smueqlem  |-  ( ph  ->  ( ( A smul  B
)  i^i  ( 0..^ N ) )  =  ( ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
Distinct variable groups:    m, n, p, A    B, m, n, p    m, N, n, p    ph, n
Allowed substitution hints:    ph( m, p)    P( m, n, p)    Q( m, n, p)

Proof of Theorem smueqlem
Dummy variables  k 
i  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smueq.a . . . . . . . 8  |-  ( ph  ->  A  C_  NN0 )
21adantr 452 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  A  C_  NN0 )
3 smueq.b . . . . . . . 8  |-  ( ph  ->  B  C_  NN0 )
43adantr 452 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  B  C_  NN0 )
5 smueq.p . . . . . . 7  |-  P  =  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
6 elfzouz 11136 . . . . . . . . 9  |-  ( k  e.  ( 0..^ N )  ->  k  e.  ( ZZ>= `  0 )
)
76adantl 453 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  k  e.  (
ZZ>= `  0 ) )
8 nn0uz 10512 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
97, 8syl6eleqr 2526 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  k  e.  NN0 )
109nn0zd 10365 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  k  e.  ZZ )
1110peano2zd 10370 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  +  1 )  e.  ZZ )
12 smueq.n . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN0 )
1312adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  N  e.  NN0 )
1413nn0zd 10365 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  N  e.  ZZ )
15 elfzolt2 11140 . . . . . . . . . 10  |-  ( k  e.  ( 0..^ N )  ->  k  <  N )
1615adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  k  <  N
)
17 nn0ltp1le 10324 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  N  e.  NN0 )  -> 
( k  <  N  <->  ( k  +  1 )  <_  N ) )
189, 13, 17syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  < 
N  <->  ( k  +  1 )  <_  N
) )
1916, 18mpbid 202 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  +  1 )  <_  N
)
20 eluz2 10486 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  (
k  +  1 ) )  <->  ( ( k  +  1 )  e.  ZZ  /\  N  e.  ZZ  /\  ( k  +  1 )  <_  N ) )
2111, 14, 19, 20syl3anbrc 1138 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  N  e.  (
ZZ>= `  ( k  +  1 ) ) )
222, 4, 5, 9, 21smuval2 12986 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( A smul  B )  <-> 
k  e.  ( P `
 N ) ) )
2312, 8syl6eleq 2525 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
24 eluzfz2b 11058 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  0
)  <->  N  e.  (
0 ... N ) )
2523, 24sylib 189 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ( 0 ... N ) )
26 fveq2 5720 . . . . . . . . . . . . . 14  |-  ( x  =  0  ->  ( P `  x )  =  ( P ` 
0 ) )
2726ineq1d 3533 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
( P `  x
)  i^i  ( 0..^ N ) )  =  ( ( P ` 
0 )  i^i  (
0..^ N ) ) )
28 fveq2 5720 . . . . . . . . . . . . . 14  |-  ( x  =  0  ->  ( Q `  x )  =  ( Q ` 
0 ) )
2928ineq1d 3533 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
( Q `  x
)  i^i  ( 0..^ N ) )  =  ( ( Q ` 
0 )  i^i  (
0..^ N ) ) )
3027, 29eqeq12d 2449 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
( ( P `  x )  i^i  (
0..^ N ) )  =  ( ( Q `
 x )  i^i  ( 0..^ N ) )  <->  ( ( P `
 0 )  i^i  ( 0..^ N ) )  =  ( ( Q `  0 )  i^i  ( 0..^ N ) ) ) )
3130imbi2d 308 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
( ph  ->  ( ( P `  x )  i^i  ( 0..^ N ) )  =  ( ( Q `  x
)  i^i  ( 0..^ N ) ) )  <-> 
( ph  ->  ( ( P `  0 )  i^i  ( 0..^ N ) )  =  ( ( Q `  0
)  i^i  ( 0..^ N ) ) ) ) )
32 fveq2 5720 . . . . . . . . . . . . . 14  |-  ( x  =  i  ->  ( P `  x )  =  ( P `  i ) )
3332ineq1d 3533 . . . . . . . . . . . . 13  |-  ( x  =  i  ->  (
( P `  x
)  i^i  ( 0..^ N ) )  =  ( ( P `  i )  i^i  (
0..^ N ) ) )
34 fveq2 5720 . . . . . . . . . . . . . 14  |-  ( x  =  i  ->  ( Q `  x )  =  ( Q `  i ) )
3534ineq1d 3533 . . . . . . . . . . . . 13  |-  ( x  =  i  ->  (
( Q `  x
)  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  (
0..^ N ) ) )
3633, 35eqeq12d 2449 . . . . . . . . . . . 12  |-  ( x  =  i  ->  (
( ( P `  x )  i^i  (
0..^ N ) )  =  ( ( Q `
 x )  i^i  ( 0..^ N ) )  <->  ( ( P `
 i )  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  ( 0..^ N ) ) ) )
3736imbi2d 308 . . . . . . . . . . 11  |-  ( x  =  i  ->  (
( ph  ->  ( ( P `  x )  i^i  ( 0..^ N ) )  =  ( ( Q `  x
)  i^i  ( 0..^ N ) ) )  <-> 
( ph  ->  ( ( P `  i )  i^i  ( 0..^ N ) )  =  ( ( Q `  i
)  i^i  ( 0..^ N ) ) ) ) )
38 fveq2 5720 . . . . . . . . . . . . . 14  |-  ( x  =  ( i  +  1 )  ->  ( P `  x )  =  ( P `  ( i  +  1 ) ) )
3938ineq1d 3533 . . . . . . . . . . . . 13  |-  ( x  =  ( i  +  1 )  ->  (
( P `  x
)  i^i  ( 0..^ N ) )  =  ( ( P `  ( i  +  1 ) )  i^i  (
0..^ N ) ) )
40 fveq2 5720 . . . . . . . . . . . . . 14  |-  ( x  =  ( i  +  1 )  ->  ( Q `  x )  =  ( Q `  ( i  +  1 ) ) )
4140ineq1d 3533 . . . . . . . . . . . . 13  |-  ( x  =  ( i  +  1 )  ->  (
( Q `  x
)  i^i  ( 0..^ N ) )  =  ( ( Q `  ( i  +  1 ) )  i^i  (
0..^ N ) ) )
4239, 41eqeq12d 2449 . . . . . . . . . . . 12  |-  ( x  =  ( i  +  1 )  ->  (
( ( P `  x )  i^i  (
0..^ N ) )  =  ( ( Q `
 x )  i^i  ( 0..^ N ) )  <->  ( ( P `
 ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( Q `  ( i  +  1 ) )  i^i  ( 0..^ N ) ) ) )
4342imbi2d 308 . . . . . . . . . . 11  |-  ( x  =  ( i  +  1 )  ->  (
( ph  ->  ( ( P `  x )  i^i  ( 0..^ N ) )  =  ( ( Q `  x
)  i^i  ( 0..^ N ) ) )  <-> 
( ph  ->  ( ( P `  ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( Q `  (
i  +  1 ) )  i^i  ( 0..^ N ) ) ) ) )
44 fveq2 5720 . . . . . . . . . . . . . 14  |-  ( x  =  N  ->  ( P `  x )  =  ( P `  N ) )
4544ineq1d 3533 . . . . . . . . . . . . 13  |-  ( x  =  N  ->  (
( P `  x
)  i^i  ( 0..^ N ) )  =  ( ( P `  N )  i^i  (
0..^ N ) ) )
46 fveq2 5720 . . . . . . . . . . . . . 14  |-  ( x  =  N  ->  ( Q `  x )  =  ( Q `  N ) )
4746ineq1d 3533 . . . . . . . . . . . . 13  |-  ( x  =  N  ->  (
( Q `  x
)  i^i  ( 0..^ N ) )  =  ( ( Q `  N )  i^i  (
0..^ N ) ) )
4845, 47eqeq12d 2449 . . . . . . . . . . . 12  |-  ( x  =  N  ->  (
( ( P `  x )  i^i  (
0..^ N ) )  =  ( ( Q `
 x )  i^i  ( 0..^ N ) )  <->  ( ( P `
 N )  i^i  ( 0..^ N ) )  =  ( ( Q `  N )  i^i  ( 0..^ N ) ) ) )
4948imbi2d 308 . . . . . . . . . . 11  |-  ( x  =  N  ->  (
( ph  ->  ( ( P `  x )  i^i  ( 0..^ N ) )  =  ( ( Q `  x
)  i^i  ( 0..^ N ) ) )  <-> 
( ph  ->  ( ( P `  N )  i^i  ( 0..^ N ) )  =  ( ( Q `  N
)  i^i  ( 0..^ N ) ) ) ) )
501, 3, 5smup0 12983 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( P `  0
)  =  (/) )
51 inss1 3553 . . . . . . . . . . . . . . . 16  |-  ( B  i^i  ( 0..^ N ) )  C_  B
5251, 3syl5ss 3351 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  i^i  (
0..^ N ) ) 
C_  NN0 )
53 smueq.q . . . . . . . . . . . . . . 15  |-  Q  =  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  ( B  i^i  ( 0..^ N ) ) ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
541, 52, 53smup0 12983 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Q `  0
)  =  (/) )
5550, 54eqtr4d 2470 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P `  0
)  =  ( Q `
 0 ) )
5655ineq1d 3533 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P ` 
0 )  i^i  (
0..^ N ) )  =  ( ( Q `
 0 )  i^i  ( 0..^ N ) ) )
5756a1i 11 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( ph  ->  ( ( P ` 
0 )  i^i  (
0..^ N ) )  =  ( ( Q `
 0 )  i^i  ( 0..^ N ) ) ) )
58 oveq1 6080 . . . . . . . . . . . . . . 15  |-  ( ( ( P `  i
)  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  (
0..^ N ) )  ->  ( ( ( P `  i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  B ) }  i^i  ( 0..^ N ) ) )  =  ( ( ( Q `  i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  B ) }  i^i  ( 0..^ N ) ) ) )
5958ineq1d 3533 . . . . . . . . . . . . . 14  |-  ( ( ( P `  i
)  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  (
0..^ N ) )  ->  ( ( ( ( P `  i
)  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  =  ( ( ( ( Q `
 i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
601adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  A  C_  NN0 )
613adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  B  C_  NN0 )
62 elfzouz 11136 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  ( 0..^ N )  ->  i  e.  ( ZZ>= `  0 )
)
6362, 8syl6eleqr 2526 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  ( 0..^ N )  ->  i  e.  NN0 )
6463adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  i  e.  NN0 )
6560, 61, 5, 64smupp1 12984 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( P `  ( i  +  1 ) )  =  ( ( P `  i
) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) } ) )
6665ineq1d 3533 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( P `
 ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( ( P `  i
) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) } )  i^i  (
0..^ N ) ) )
671, 3, 5smupf 12982 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  P : NN0 --> ~P NN0 )
68 ffvelrn 5860 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P : NN0 --> ~P NN0  /\  i  e.  NN0 )  ->  ( P `  i
)  e.  ~P NN0 )
6967, 63, 68syl2an 464 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( P `  i )  e.  ~P NN0 )
7069elpwid 3800 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( P `  i )  C_  NN0 )
71 ssrab2 3420 . . . . . . . . . . . . . . . . . 18  |-  { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) } 
C_  NN0
7271a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) } 
C_  NN0 )
7312adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  N  e.  NN0 )
7470, 72, 73sadeq 12976 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( P `  i ) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) } )  i^i  (
0..^ N ) )  =  ( ( ( ( P `  i
)  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
7566, 74eqtrd 2467 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( P `
 ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( ( ( P `  i )  i^i  (
0..^ N ) ) sadd  ( { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
7652adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( B  i^i  ( 0..^ N ) ) 
C_  NN0 )
7760, 76, 53, 64smupp1 12984 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( Q `  ( i  +  1 ) )  =  ( ( Q `  i
) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) } ) )
7877ineq1d 3533 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( Q `
 ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( ( Q `  i
) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) } )  i^i  ( 0..^ N ) ) )
791, 52, 53smupf 12982 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  Q : NN0 --> ~P NN0 )
80 ffvelrn 5860 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Q : NN0 --> ~P NN0  /\  i  e.  NN0 )  ->  ( Q `  i
)  e.  ~P NN0 )
8179, 63, 80syl2an 464 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( Q `  i )  e.  ~P NN0 )
8281elpwid 3800 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( Q `  i )  C_  NN0 )
83 ssrab2 3420 . . . . . . . . . . . . . . . . . 18  |-  { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  ( B  i^i  ( 0..^ N ) ) ) }  C_  NN0
8483a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  ( B  i^i  ( 0..^ N ) ) ) }  C_  NN0 )
8582, 84, 73sadeq 12976 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( Q `  i ) sadd  { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) } )  i^i  ( 0..^ N ) )  =  ( ( ( ( Q `  i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
86 inss2 3554 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( NN0 
i^i  ( 0..^ N ) )  C_  (
0..^ N )
8786sseli 3336 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( NN0  i^i  ( 0..^ N ) )  ->  n  e.  ( 0..^ N ) )
8861adantr 452 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  B  C_  NN0 )
8988sseld 3339 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
n  -  i )  e.  B  ->  (
n  -  i )  e.  NN0 ) )
90 elfzo0 11163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  e.  ( 0..^ N )  <->  ( n  e. 
NN0  /\  N  e.  NN  /\  n  <  N
) )
9190simp2bi 973 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  e.  ( 0..^ N )  ->  N  e.  NN )
9291adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  N  e.  NN )
9390simp1bi 972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( n  e.  ( 0..^ N )  ->  n  e.  NN0 )
9493adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  n  e.  NN0 )
9594nn0red 10267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  n  e.  RR )
9664adantr 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  i  e.  NN0 )
9796nn0red 10267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  i  e.  RR )
9895, 97resubcld 9457 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( n  -  i )  e.  RR )
9992nnred 10007 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  N  e.  RR )
10096nn0ge0d 10269 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  0  <_  i )
10195, 97subge02d 9610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( 0  <_  i  <->  ( n  -  i )  <_  n ) )
102100, 101mpbid 202 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( n  -  i )  <_  n )
103 elfzolt2 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  e.  ( 0..^ N )  ->  n  <  N )
104103adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  n  <  N )
10598, 95, 99, 102, 104lelttrd 9220 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( n  -  i )  < 
N )
10692, 105jca 519 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( N  e.  NN  /\  ( n  -  i )  < 
N ) )
107 elfzo0 11163 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( n  -  i )  e.  ( 0..^ N )  <->  ( ( n  -  i )  e. 
NN0  /\  N  e.  NN  /\  ( n  -  i )  <  N
) )
108 3anass 940 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( n  -  i
)  e.  NN0  /\  N  e.  NN  /\  (
n  -  i )  <  N )  <->  ( (
n  -  i )  e.  NN0  /\  ( N  e.  NN  /\  (
n  -  i )  <  N ) ) )
109107, 108bitri 241 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( n  -  i )  e.  ( 0..^ N )  <->  ( ( n  -  i )  e. 
NN0  /\  ( N  e.  NN  /\  ( n  -  i )  < 
N ) ) )
110109baib 872 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( n  -  i )  e.  NN0  ->  ( ( n  -  i )  e.  ( 0..^ N )  <->  ( N  e.  NN  /\  ( n  -  i )  < 
N ) ) )
111106, 110syl5ibrcom 214 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
n  -  i )  e.  NN0  ->  ( n  -  i )  e.  ( 0..^ N ) ) )
11289, 111syld 42 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
n  -  i )  e.  B  ->  (
n  -  i )  e.  ( 0..^ N ) ) )
113112pm4.71rd 617 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
n  -  i )  e.  B  <->  ( (
n  -  i )  e.  ( 0..^ N )  /\  ( n  -  i )  e.  B ) ) )
114 ancom 438 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( n  -  i
)  e.  ( 0..^ N )  /\  (
n  -  i )  e.  B )  <->  ( (
n  -  i )  e.  B  /\  (
n  -  i )  e.  ( 0..^ N ) ) )
115 elin 3522 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( n  -  i )  e.  ( B  i^i  ( 0..^ N ) )  <-> 
( ( n  -  i )  e.  B  /\  ( n  -  i
)  e.  ( 0..^ N ) ) )
116114, 115bitr4i 244 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( n  -  i
)  e.  ( 0..^ N )  /\  (
n  -  i )  e.  B )  <->  ( n  -  i )  e.  ( B  i^i  (
0..^ N ) ) )
117113, 116syl6rbb 254 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
n  -  i )  e.  ( B  i^i  ( 0..^ N ) )  <-> 
( n  -  i
)  e.  B ) )
118117anbi2d 685 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( 0..^ N ) )  ->  ( (
i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) )  <->  ( i  e.  A  /\  (
n  -  i )  e.  B ) ) )
11987, 118sylan2 461 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  ( 0..^ N ) )  /\  n  e.  ( NN0  i^i  (
0..^ N ) ) )  ->  ( (
i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) )  <->  ( i  e.  A  /\  (
n  -  i )  e.  B ) ) )
120119rabbidva 2939 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  { n  e.  ( NN0  i^i  (
0..^ N ) )  |  ( i  e.  A  /\  ( n  -  i )  e.  ( B  i^i  (
0..^ N ) ) ) }  =  {
n  e.  ( NN0 
i^i  ( 0..^ N ) )  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) } )
121 inrab2 3606 . . . . . . . . . . . . . . . . . . 19  |-  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) }  i^i  ( 0..^ N ) )  =  {
n  e.  ( NN0 
i^i  ( 0..^ N ) )  |  ( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) }
122 inrab2 3606 . . . . . . . . . . . . . . . . . . 19  |-  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  B ) }  i^i  ( 0..^ N ) )  =  { n  e.  ( NN0  i^i  ( 0..^ N ) )  |  ( i  e.  A  /\  ( n  -  i
)  e.  B ) }
123120, 121, 1223eqtr4g 2492 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  ( B  i^i  ( 0..^ N ) ) ) }  i^i  (
0..^ N ) )  =  ( { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )
124123oveq2d 6089 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( Q `  i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  | 
( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) }  i^i  ( 0..^ N ) ) )  =  ( ( ( Q `
 i )  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) ) )
125124ineq1d 3533 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( ( Q `  i
)  i^i  ( 0..^ N ) ) sadd  ( { n  e.  NN0  |  ( i  e.  A  /\  ( n  -  i
)  e.  ( B  i^i  ( 0..^ N ) ) ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  =  ( ( ( ( Q `  i )  i^i  (
0..^ N ) ) sadd  ( { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
12678, 85, 1253eqtrd 2471 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( Q `
 ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( ( ( Q `  i )  i^i  (
0..^ N ) ) sadd  ( { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
12775, 126eqeq12d 2449 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( P `  ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( Q `  (
i  +  1 ) )  i^i  ( 0..^ N ) )  <->  ( (
( ( P `  i )  i^i  (
0..^ N ) ) sadd  ( { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  =  ( ( ( ( Q `  i )  i^i  (
0..^ N ) ) sadd  ( { n  e. 
NN0  |  ( i  e.  A  /\  (
n  -  i )  e.  B ) }  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )
12859, 127syl5ibr 213 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( 0..^ N ) )  ->  ( ( ( P `  i )  i^i  ( 0..^ N ) )  =  ( ( Q `  i
)  i^i  ( 0..^ N ) )  -> 
( ( P `  ( i  +  1 ) )  i^i  (
0..^ N ) )  =  ( ( Q `
 ( i  +  1 ) )  i^i  ( 0..^ N ) ) ) )
129128expcom 425 . . . . . . . . . . . 12  |-  ( i  e.  ( 0..^ N )  ->  ( ph  ->  ( ( ( P `
 i )  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  ( 0..^ N ) )  ->  (
( P `  (
i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( Q `  ( i  +  1 ) )  i^i  (
0..^ N ) ) ) ) )
130129a2d 24 . . . . . . . . . . 11  |-  ( i  e.  ( 0..^ N )  ->  ( ( ph  ->  ( ( P `
 i )  i^i  ( 0..^ N ) )  =  ( ( Q `  i )  i^i  ( 0..^ N ) ) )  -> 
( ph  ->  ( ( P `  ( i  +  1 ) )  i^i  ( 0..^ N ) )  =  ( ( Q `  (
i  +  1 ) )  i^i  ( 0..^ N ) ) ) ) )
13131, 37, 43, 49, 57, 130fzind2 11190 . . . . . . . . . 10  |-  ( N  e.  ( 0 ... N )  ->  ( ph  ->  ( ( P `
 N )  i^i  ( 0..^ N ) )  =  ( ( Q `  N )  i^i  ( 0..^ N ) ) ) )
13225, 131mpcom 34 . . . . . . . . 9  |-  ( ph  ->  ( ( P `  N )  i^i  (
0..^ N ) )  =  ( ( Q `
 N )  i^i  ( 0..^ N ) ) )
133132adantr 452 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( ( P `
 N )  i^i  ( 0..^ N ) )  =  ( ( Q `  N )  i^i  ( 0..^ N ) ) )
134133eleq2d 2502 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( ( P `  N )  i^i  (
0..^ N ) )  <-> 
k  e.  ( ( Q `  N )  i^i  ( 0..^ N ) ) ) )
135 elin 3522 . . . . . . . . 9  |-  ( k  e.  ( ( P `
 N )  i^i  ( 0..^ N ) )  <->  ( k  e.  ( P `  N
)  /\  k  e.  ( 0..^ N ) ) )
136135rbaib 874 . . . . . . . 8  |-  ( k  e.  ( 0..^ N )  ->  ( k  e.  ( ( P `  N )  i^i  (
0..^ N ) )  <-> 
k  e.  ( P `
 N ) ) )
137136adantl 453 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( ( P `  N )  i^i  (
0..^ N ) )  <-> 
k  e.  ( P `
 N ) ) )
138 elin 3522 . . . . . . . . 9  |-  ( k  e.  ( ( Q `
 N )  i^i  ( 0..^ N ) )  <->  ( k  e.  ( Q `  N
)  /\  k  e.  ( 0..^ N ) ) )
139138rbaib 874 . . . . . . . 8  |-  ( k  e.  ( 0..^ N )  ->  ( k  e.  ( ( Q `  N )  i^i  (
0..^ N ) )  <-> 
k  e.  ( Q `
 N ) ) )
140139adantl 453 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( ( Q `  N )  i^i  (
0..^ N ) )  <-> 
k  e.  ( Q `
 N ) ) )
141134, 137, 1403bitr3d 275 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( P `  N
)  <->  k  e.  ( Q `  N ) ) )
14252adantr 452 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( B  i^i  ( 0..^ N ) ) 
C_  NN0 )
1432, 142, 53, 13smupval 12992 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( Q `  N )  =  ( ( A  i^i  (
0..^ N ) ) smul  ( B  i^i  (
0..^ N ) ) ) )
144143eleq2d 2502 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( Q `  N
)  <->  k  e.  ( ( A  i^i  (
0..^ N ) ) smul  ( B  i^i  (
0..^ N ) ) ) ) )
14522, 141, 1443bitrd 271 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0..^ N ) )  ->  ( k  e.  ( A smul  B )  <-> 
k  e.  ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  ( 0..^ N ) ) ) ) )
146145ex 424 . . . 4  |-  ( ph  ->  ( k  e.  ( 0..^ N )  -> 
( k  e.  ( A smul  B )  <->  k  e.  ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  (
0..^ N ) ) ) ) ) )
147146pm5.32rd 622 . . 3  |-  ( ph  ->  ( ( k  e.  ( A smul  B )  /\  k  e.  ( 0..^ N ) )  <-> 
( k  e.  ( ( A  i^i  (
0..^ N ) ) smul  ( B  i^i  (
0..^ N ) ) )  /\  k  e.  ( 0..^ N ) ) ) )
148 elin 3522 . . 3  |-  ( k  e.  ( ( A smul 
B )  i^i  (
0..^ N ) )  <-> 
( k  e.  ( A smul  B )  /\  k  e.  ( 0..^ N ) ) )
149 elin 3522 . . 3  |-  ( k  e.  ( ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  <->  ( k  e.  ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  (
0..^ N ) ) )  /\  k  e.  ( 0..^ N ) ) )
150147, 148, 1493bitr4g 280 . 2  |-  ( ph  ->  ( k  e.  ( ( A smul  B )  i^i  ( 0..^ N ) )  <->  k  e.  ( ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )
151150eqrdv 2433 1  |-  ( ph  ->  ( ( A smul  B
)  i^i  ( 0..^ N ) )  =  ( ( ( A  i^i  ( 0..^ N ) ) smul  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {crab 2701    i^i cin 3311    C_ wss 3312   (/)c0 3620   ifcif 3731   ~Pcpw 3791   class class class wbr 4204    e. cmpt 4258   -->wf 5442   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   0cc0 8982   1c1 8983    + caddc 8985    < clt 9112    <_ cle 9113    - cmin 9283   NNcn 9992   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035  ..^cfzo 11127    seq cseq 11315   sadd csad 12924   smul csmu 12925
This theorem is referenced by:  smueq  12995
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-xor 1314  df-tru 1328  df-had 1389  df-cad 1390  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-disj 4175  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-sum 12472  df-dvds 12845  df-bits 12926  df-sad 12955  df-smu 12980
  Copyright terms: Public domain W3C validator