MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smupp1 Unicode version

Theorem smupp1 12687
Description: The initial element of the partial sum sequence. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a  |-  ( ph  ->  A  C_  NN0 )
smuval.b  |-  ( ph  ->  B  C_  NN0 )
smuval.p  |-  P  =  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
smuval.n  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
smupp1  |-  ( ph  ->  ( P `  ( N  +  1 ) )  =  ( ( P `  N ) sadd  { n  e.  NN0  |  ( N  e.  A  /\  ( n  -  N
)  e.  B ) } ) )
Distinct variable groups:    m, n, p, A    n, N    ph, n    B, m, n, p
Allowed substitution hints:    ph( m, p)    P( m, n, p)    N( m, p)

Proof of Theorem smupp1
Dummy variables  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval.n . . . . 5  |-  ( ph  ->  N  e.  NN0 )
2 nn0uz 10278 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
31, 2syl6eleq 2386 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
4 seqp1 11077 . . . 4  |-  ( N  e.  ( ZZ>= `  0
)  ->  (  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  ( N  +  1 ) )  =  ( (  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  N
) ( p  e. 
~P NN0 ,  m  e. 
NN0  |->  ( p sadd  {
n  e.  NN0  | 
( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) `  ( N  +  1 ) ) ) )
53, 4syl 15 . . 3  |-  ( ph  ->  (  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  ( N  +  1 ) )  =  ( (  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  N
) ( p  e. 
~P NN0 ,  m  e. 
NN0  |->  ( p sadd  {
n  e.  NN0  | 
( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) `  ( N  +  1 ) ) ) )
6 smuval.p . . . 4  |-  P  =  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
76fveq1i 5542 . . 3  |-  ( P `
 ( N  + 
1 ) )  =  (  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  ( N  +  1 ) )
86fveq1i 5542 . . . 4  |-  ( P `
 N )  =  (  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  N )
98oveq1i 5884 . . 3  |-  ( ( P `  N ) ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 ( N  + 
1 ) ) )  =  ( (  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  N
) ( p  e. 
~P NN0 ,  m  e. 
NN0  |->  ( p sadd  {
n  e.  NN0  | 
( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) `  ( N  +  1 ) ) )
105, 7, 93eqtr4g 2353 . 2  |-  ( ph  ->  ( P `  ( N  +  1 ) )  =  ( ( P `  N ) ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 ( N  + 
1 ) ) ) )
11 1nn0 9997 . . . . . . 7  |-  1  e.  NN0
1211a1i 10 . . . . . 6  |-  ( ph  ->  1  e.  NN0 )
131, 12nn0addcld 10038 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
14 eqeq1 2302 . . . . . . 7  |-  ( n  =  ( N  + 
1 )  ->  (
n  =  0  <->  ( N  +  1 )  =  0 ) )
15 oveq1 5881 . . . . . . 7  |-  ( n  =  ( N  + 
1 )  ->  (
n  -  1 )  =  ( ( N  +  1 )  - 
1 ) )
1614, 15ifbieq2d 3598 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) )  =  if ( ( N  +  1 )  =  0 ,  (/) ,  ( ( N  + 
1 )  -  1 ) ) )
17 eqid 2296 . . . . . 6  |-  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) )  =  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) )
18 0ex 4166 . . . . . . 7  |-  (/)  e.  _V
19 ovex 5899 . . . . . . 7  |-  ( ( N  +  1 )  -  1 )  e. 
_V
2018, 19ifex 3636 . . . . . 6  |-  if ( ( N  +  1 )  =  0 ,  (/) ,  ( ( N  +  1 )  - 
1 ) )  e. 
_V
2116, 17, 20fvmpt 5618 . . . . 5  |-  ( ( N  +  1 )  e.  NN0  ->  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 ( N  + 
1 ) )  =  if ( ( N  +  1 )  =  0 ,  (/) ,  ( ( N  +  1 )  -  1 ) ) )
2213, 21syl 15 . . . 4  |-  ( ph  ->  ( ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) `  ( N  +  1
) )  =  if ( ( N  + 
1 )  =  0 ,  (/) ,  ( ( N  +  1 )  -  1 ) ) )
23 nn0p1nn 10019 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
241, 23syl 15 . . . . . 6  |-  ( ph  ->  ( N  +  1 )  e.  NN )
2524nnne0d 9806 . . . . 5  |-  ( ph  ->  ( N  +  1 )  =/=  0 )
26 ifnefalse 3586 . . . . 5  |-  ( ( N  +  1 )  =/=  0  ->  if ( ( N  + 
1 )  =  0 ,  (/) ,  ( ( N  +  1 )  -  1 ) )  =  ( ( N  +  1 )  - 
1 ) )
2725, 26syl 15 . . . 4  |-  ( ph  ->  if ( ( N  +  1 )  =  0 ,  (/) ,  ( ( N  +  1 )  -  1 ) )  =  ( ( N  +  1 )  -  1 ) )
281nn0cnd 10036 . . . . 5  |-  ( ph  ->  N  e.  CC )
2912nn0cnd 10036 . . . . 5  |-  ( ph  ->  1  e.  CC )
3028, 29pncand 9174 . . . 4  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  =  N )
3122, 27, 303eqtrd 2332 . . 3  |-  ( ph  ->  ( ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) `  ( N  +  1
) )  =  N )
3231oveq2d 5890 . 2  |-  ( ph  ->  ( ( P `  N ) ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) `  ( N  +  1 ) ) )  =  ( ( P `  N ) ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) ) N ) )
33 smuval.a . . . . 5  |-  ( ph  ->  A  C_  NN0 )
34 smuval.b . . . . 5  |-  ( ph  ->  B  C_  NN0 )
3533, 34, 6smupf 12685 . . . 4  |-  ( ph  ->  P : NN0 --> ~P NN0 )
36 ffvelrn 5679 . . . 4  |-  ( ( P : NN0 --> ~P NN0  /\  N  e.  NN0 )  ->  ( P `  N
)  e.  ~P NN0 )
3735, 1, 36syl2anc 642 . . 3  |-  ( ph  ->  ( P `  N
)  e.  ~P NN0 )
38 simpl 443 . . . . 5  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  x  =  ( P `
 N ) )
39 simpr 447 . . . . . . . . 9  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  y  =  N )
4039eleq1d 2362 . . . . . . . 8  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  ( y  e.  A  <->  N  e.  A ) )
4139oveq2d 5890 . . . . . . . . 9  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  ( k  -  y
)  =  ( k  -  N ) )
4241eleq1d 2362 . . . . . . . 8  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  ( ( k  -  y )  e.  B  <->  ( k  -  N )  e.  B ) )
4340, 42anbi12d 691 . . . . . . 7  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  ( ( y  e.  A  /\  ( k  -  y )  e.  B )  <->  ( N  e.  A  /\  (
k  -  N )  e.  B ) ) )
4443rabbidv 2793 . . . . . 6  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  { k  e.  NN0  |  ( y  e.  A  /\  ( k  -  y
)  e.  B ) }  =  { k  e.  NN0  |  ( N  e.  A  /\  ( k  -  N
)  e.  B ) } )
45 oveq1 5881 . . . . . . . . 9  |-  ( k  =  n  ->  (
k  -  N )  =  ( n  -  N ) )
4645eleq1d 2362 . . . . . . . 8  |-  ( k  =  n  ->  (
( k  -  N
)  e.  B  <->  ( n  -  N )  e.  B
) )
4746anbi2d 684 . . . . . . 7  |-  ( k  =  n  ->  (
( N  e.  A  /\  ( k  -  N
)  e.  B )  <-> 
( N  e.  A  /\  ( n  -  N
)  e.  B ) ) )
4847cbvrabv 2800 . . . . . 6  |-  { k  e.  NN0  |  ( N  e.  A  /\  ( k  -  N
)  e.  B ) }  =  { n  e.  NN0  |  ( N  e.  A  /\  (
n  -  N )  e.  B ) }
4944, 48syl6eq 2344 . . . . 5  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  { k  e.  NN0  |  ( y  e.  A  /\  ( k  -  y
)  e.  B ) }  =  { n  e.  NN0  |  ( N  e.  A  /\  (
n  -  N )  e.  B ) } )
5038, 49oveq12d 5892 . . . 4  |-  ( ( x  =  ( P `
 N )  /\  y  =  N )  ->  ( x sadd  { k  e.  NN0  |  (
y  e.  A  /\  ( k  -  y
)  e.  B ) } )  =  ( ( P `  N
) sadd  { n  e.  NN0  |  ( N  e.  A  /\  ( n  -  N
)  e.  B ) } ) )
51 oveq1 5881 . . . . 5  |-  ( p  =  x  ->  (
p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } )  =  ( x sadd  { n  e. 
NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) } ) )
52 eleq1 2356 . . . . . . . . 9  |-  ( m  =  y  ->  (
m  e.  A  <->  y  e.  A ) )
53 oveq2 5882 . . . . . . . . . 10  |-  ( m  =  y  ->  (
n  -  m )  =  ( n  -  y ) )
5453eleq1d 2362 . . . . . . . . 9  |-  ( m  =  y  ->  (
( n  -  m
)  e.  B  <->  ( n  -  y )  e.  B ) )
5552, 54anbi12d 691 . . . . . . . 8  |-  ( m  =  y  ->  (
( m  e.  A  /\  ( n  -  m
)  e.  B )  <-> 
( y  e.  A  /\  ( n  -  y
)  e.  B ) ) )
5655rabbidv 2793 . . . . . . 7  |-  ( m  =  y  ->  { n  e.  NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) }  =  { n  e. 
NN0  |  ( y  e.  A  /\  (
n  -  y )  e.  B ) } )
57 oveq1 5881 . . . . . . . . . 10  |-  ( k  =  n  ->  (
k  -  y )  =  ( n  -  y ) )
5857eleq1d 2362 . . . . . . . . 9  |-  ( k  =  n  ->  (
( k  -  y
)  e.  B  <->  ( n  -  y )  e.  B ) )
5958anbi2d 684 . . . . . . . 8  |-  ( k  =  n  ->  (
( y  e.  A  /\  ( k  -  y
)  e.  B )  <-> 
( y  e.  A  /\  ( n  -  y
)  e.  B ) ) )
6059cbvrabv 2800 . . . . . . 7  |-  { k  e.  NN0  |  (
y  e.  A  /\  ( k  -  y
)  e.  B ) }  =  { n  e.  NN0  |  ( y  e.  A  /\  (
n  -  y )  e.  B ) }
6156, 60syl6eqr 2346 . . . . . 6  |-  ( m  =  y  ->  { n  e.  NN0  |  ( m  e.  A  /\  (
n  -  m )  e.  B ) }  =  { k  e. 
NN0  |  ( y  e.  A  /\  (
k  -  y )  e.  B ) } )
6261oveq2d 5890 . . . . 5  |-  ( m  =  y  ->  (
x sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } )  =  ( x sadd  { k  e. 
NN0  |  ( y  e.  A  /\  (
k  -  y )  e.  B ) } ) )
6351, 62cbvmpt2v 5942 . . . 4  |-  ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) )  =  ( x  e.  ~P NN0 ,  y  e.  NN0  |->  ( x sadd  { k  e. 
NN0  |  ( y  e.  A  /\  (
k  -  y )  e.  B ) } ) )
64 ovex 5899 . . . 4  |-  ( ( P `  N ) sadd  { n  e.  NN0  |  ( N  e.  A  /\  ( n  -  N
)  e.  B ) } )  e.  _V
6550, 63, 64ovmpt2a 5994 . . 3  |-  ( ( ( P `  N
)  e.  ~P NN0  /\  N  e.  NN0 )  ->  ( ( P `  N ) ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) N )  =  ( ( P `  N ) sadd  { n  e.  NN0  |  ( N  e.  A  /\  ( n  -  N
)  e.  B ) } ) )
6637, 1, 65syl2anc 642 . 2  |-  ( ph  ->  ( ( P `  N ) ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) N )  =  ( ( P `  N ) sadd  { n  e.  NN0  |  ( N  e.  A  /\  ( n  -  N
)  e.  B ) } ) )
6710, 32, 663eqtrd 2332 1  |-  ( ph  ->  ( P `  ( N  +  1 ) )  =  ( ( P `  N ) sadd  { n  e.  NN0  |  ( N  e.  A  /\  ( n  -  N
)  e.  B ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   {crab 2560    C_ wss 3165   (/)c0 3468   ifcif 3578   ~Pcpw 3638    e. cmpt 4093   -->wf 5267   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   0cc0 8753   1c1 8754    + caddc 8756    - cmin 9053   NNcn 9762   NN0cn0 9981   ZZ>=cuz 10246    seq cseq 11062   sadd csad 12627
This theorem is referenced by:  smuval2  12689  smupvallem  12690  smu01lem  12692  smupval  12695  smup1  12696  smueqlem  12697
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-xor 1296  df-tru 1310  df-had 1370  df-cad 1371  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-seq 11063  df-sad 12658
  Copyright terms: Public domain W3C validator