MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smupvallem Structured version   Unicode version

Theorem smupvallem 12996
Description: If  A only has elements less than  N, then all elements of the partial sum sequence past  N already equal the final value. (Contributed by Mario Carneiro, 20-Sep-2016.)
Hypotheses
Ref Expression
smuval.a  |-  ( ph  ->  A  C_  NN0 )
smuval.b  |-  ( ph  ->  B  C_  NN0 )
smuval.p  |-  P  =  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
smuval.n  |-  ( ph  ->  N  e.  NN0 )
smupvallem.a  |-  ( ph  ->  A  C_  ( 0..^ N ) )
smupvallem.m  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
Assertion
Ref Expression
smupvallem  |-  ( ph  ->  ( P `  M
)  =  ( A smul 
B ) )
Distinct variable groups:    m, n, p, A    n, N    ph, n    B, m, n, p
Allowed substitution hints:    ph( m, p)    P( m, n, p)    M( m, n, p)    N( m, p)

Proof of Theorem smupvallem
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval.a . . . . . . 7  |-  ( ph  ->  A  C_  NN0 )
2 smuval.b . . . . . . 7  |-  ( ph  ->  B  C_  NN0 )
3 smuval.p . . . . . . 7  |-  P  =  seq  0 ( ( p  e.  ~P NN0 ,  m  e.  NN0  |->  ( p sadd  { n  e.  NN0  |  ( m  e.  A  /\  ( n  -  m
)  e.  B ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )
41, 2, 3smupf 12991 . . . . . 6  |-  ( ph  ->  P : NN0 --> ~P NN0 )
5 smuval.n . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
6 smupvallem.m . . . . . . 7  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
7 eluznn0 10547 . . . . . . 7  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN0 )
85, 6, 7syl2anc 644 . . . . . 6  |-  ( ph  ->  M  e.  NN0 )
94, 8ffvelrnd 5872 . . . . 5  |-  ( ph  ->  ( P `  M
)  e.  ~P NN0 )
109elpwid 3809 . . . 4  |-  ( ph  ->  ( P `  M
)  C_  NN0 )
1110sseld 3348 . . 3  |-  ( ph  ->  ( k  e.  ( P `  M )  ->  k  e.  NN0 ) )
121, 2, 3smufval 12990 . . . . 5  |-  ( ph  ->  ( A smul  B )  =  { k  e. 
NN0  |  k  e.  ( P `  ( k  +  1 ) ) } )
13 ssrab2 3429 . . . . 5  |-  { k  e.  NN0  |  k  e.  ( P `  (
k  +  1 ) ) }  C_  NN0
1412, 13syl6eqss 3399 . . . 4  |-  ( ph  ->  ( A smul  B ) 
C_  NN0 )
1514sseld 3348 . . 3  |-  ( ph  ->  ( k  e.  ( A smul  B )  -> 
k  e.  NN0 )
)
161ad2antrr 708 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  N  e.  ( ZZ>= `  ( k  +  1 ) ) )  ->  A  C_  NN0 )
172ad2antrr 708 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  N  e.  ( ZZ>= `  ( k  +  1 ) ) )  ->  B  C_  NN0 )
18 simplr 733 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  N  e.  ( ZZ>= `  ( k  +  1 ) ) )  ->  k  e.  NN0 )
196adantr 453 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  M  e.  ( ZZ>= `  N )
)
20 uztrn 10503 . . . . . . . 8  |-  ( ( M  e.  ( ZZ>= `  N )  /\  N  e.  ( ZZ>= `  ( k  +  1 ) ) )  ->  M  e.  ( ZZ>= `  ( k  +  1 ) ) )
2119, 20sylan 459 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  N  e.  ( ZZ>= `  ( k  +  1 ) ) )  ->  M  e.  ( ZZ>= `  ( k  +  1 ) ) )
2216, 17, 3, 18, 21smuval2 12995 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  N  e.  ( ZZ>= `  ( k  +  1 ) ) )  ->  ( k  e.  ( A smul  B )  <-> 
k  e.  ( P `
 M ) ) )
2322bicomd 194 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  N  e.  ( ZZ>= `  ( k  +  1 ) ) )  ->  ( k  e.  ( P `  M
)  <->  k  e.  ( A smul  B ) ) )
246ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
k  +  1 )  e.  ( ZZ>= `  N
) )  ->  M  e.  ( ZZ>= `  N )
)
25 simpll 732 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
k  +  1 )  e.  ( ZZ>= `  N
) )  ->  ph )
26 fveq2 5729 . . . . . . . . . . . 12  |-  ( x  =  N  ->  ( P `  x )  =  ( P `  N ) )
2726eqeq1d 2445 . . . . . . . . . . 11  |-  ( x  =  N  ->  (
( P `  x
)  =  ( P `
 N )  <->  ( P `  N )  =  ( P `  N ) ) )
2827imbi2d 309 . . . . . . . . . 10  |-  ( x  =  N  ->  (
( ph  ->  ( P `
 x )  =  ( P `  N
) )  <->  ( ph  ->  ( P `  N
)  =  ( P `
 N ) ) ) )
29 fveq2 5729 . . . . . . . . . . . 12  |-  ( x  =  k  ->  ( P `  x )  =  ( P `  k ) )
3029eqeq1d 2445 . . . . . . . . . . 11  |-  ( x  =  k  ->  (
( P `  x
)  =  ( P `
 N )  <->  ( P `  k )  =  ( P `  N ) ) )
3130imbi2d 309 . . . . . . . . . 10  |-  ( x  =  k  ->  (
( ph  ->  ( P `
 x )  =  ( P `  N
) )  <->  ( ph  ->  ( P `  k
)  =  ( P `
 N ) ) ) )
32 fveq2 5729 . . . . . . . . . . . 12  |-  ( x  =  ( k  +  1 )  ->  ( P `  x )  =  ( P `  ( k  +  1 ) ) )
3332eqeq1d 2445 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  (
( P `  x
)  =  ( P `
 N )  <->  ( P `  ( k  +  1 ) )  =  ( P `  N ) ) )
3433imbi2d 309 . . . . . . . . . 10  |-  ( x  =  ( k  +  1 )  ->  (
( ph  ->  ( P `
 x )  =  ( P `  N
) )  <->  ( ph  ->  ( P `  (
k  +  1 ) )  =  ( P `
 N ) ) ) )
35 fveq2 5729 . . . . . . . . . . . 12  |-  ( x  =  M  ->  ( P `  x )  =  ( P `  M ) )
3635eqeq1d 2445 . . . . . . . . . . 11  |-  ( x  =  M  ->  (
( P `  x
)  =  ( P `
 N )  <->  ( P `  M )  =  ( P `  N ) ) )
3736imbi2d 309 . . . . . . . . . 10  |-  ( x  =  M  ->  (
( ph  ->  ( P `
 x )  =  ( P `  N
) )  <->  ( ph  ->  ( P `  M
)  =  ( P `
 N ) ) ) )
38 eqidd 2438 . . . . . . . . . . 11  |-  ( ph  ->  ( P `  N
)  =  ( P `
 N ) )
3938a1i 11 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( ph  ->  ( P `  N )  =  ( P `  N ) ) )
401adantr 453 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  A  C_  NN0 )
412adantr 453 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  B  C_  NN0 )
42 eluznn0 10547 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  k  e.  ( ZZ>= `  N ) )  -> 
k  e.  NN0 )
435, 42sylan 459 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  k  e.  NN0 )
4440, 41, 3, 43smupp1 12993 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( P `  ( k  +  1 ) )  =  ( ( P `  k
) sadd  { n  e.  NN0  |  ( k  e.  A  /\  ( n  -  k
)  e.  B ) } ) )
45 eluzle 10499 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( ZZ>= `  N
)  ->  N  <_  k )
4645adantl 454 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  N  <_  k )
475nn0red 10276 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  N  e.  RR )
4847adantr 453 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  N  e.  RR )
4943nn0red 10276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  k  e.  RR )
5048, 49lenltd 9220 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( N  <_  k  <->  -.  k  <  N ) )
5146, 50mpbid 203 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  -.  k  <  N )
52 smupvallem.a . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  A  C_  ( 0..^ N ) )
5352adantr 453 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  A  C_  (
0..^ N ) )
5453sseld 3348 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( k  e.  A  ->  k  e.  ( 0..^ N ) ) )
55 elfzolt2 11149 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( 0..^ N )  ->  k  <  N )
5654, 55syl6 32 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( k  e.  A  ->  k  < 
N ) )
5756adantrd 456 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( (
k  e.  A  /\  ( n  -  k
)  e.  B )  ->  k  <  N
) )
5851, 57mtod 171 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  -.  (
k  e.  A  /\  ( n  -  k
)  e.  B ) )
5958ralrimivw 2791 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  A. n  e.  NN0  -.  ( k  e.  A  /\  (
n  -  k )  e.  B ) )
60 rabeq0 3650 . . . . . . . . . . . . . . . . 17  |-  ( { n  e.  NN0  | 
( k  e.  A  /\  ( n  -  k
)  e.  B ) }  =  (/)  <->  A. n  e.  NN0  -.  ( k  e.  A  /\  (
n  -  k )  e.  B ) )
6159, 60sylibr 205 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  { n  e.  NN0  |  ( k  e.  A  /\  (
n  -  k )  e.  B ) }  =  (/) )
6261oveq2d 6098 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( ( P `  k ) sadd  { n  e.  NN0  | 
( k  e.  A  /\  ( n  -  k
)  e.  B ) } )  =  ( ( P `  k
) sadd  (/) ) )
634adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  P : NN0
--> ~P NN0 )
6463, 43ffvelrnd 5872 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( P `  k )  e.  ~P NN0 )
6564elpwid 3809 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( P `  k )  C_  NN0 )
66 sadid1 12981 . . . . . . . . . . . . . . . 16  |-  ( ( P `  k ) 
C_  NN0  ->  ( ( P `  k ) sadd  (/) )  =  ( P `  k )
)
6765, 66syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( ( P `  k ) sadd  (/) )  =  ( P `
 k ) )
6844, 62, 673eqtrd 2473 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( P `  ( k  +  1 ) )  =  ( P `  k ) )
6968eqeq1d 2445 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( ( P `  ( k  +  1 ) )  =  ( P `  N )  <->  ( P `  k )  =  ( P `  N ) ) )
7069biimprd 216 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( ( P `  k )  =  ( P `  N )  ->  ( P `  ( k  +  1 ) )  =  ( P `  N ) ) )
7170expcom 426 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  N
)  ->  ( ph  ->  ( ( P `  k )  =  ( P `  N )  ->  ( P `  ( k  +  1 ) )  =  ( P `  N ) ) ) )
7271a2d 25 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  N
)  ->  ( ( ph  ->  ( P `  k )  =  ( P `  N ) )  ->  ( ph  ->  ( P `  (
k  +  1 ) )  =  ( P `
 N ) ) ) )
7328, 31, 34, 37, 39, 72uzind4 10535 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( ph  ->  ( P `  M
)  =  ( P `
 N ) ) )
7424, 25, 73sylc 59 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
k  +  1 )  e.  ( ZZ>= `  N
) )  ->  ( P `  M )  =  ( P `  N ) )
75 simpr 449 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
k  +  1 )  e.  ( ZZ>= `  N
) )  ->  (
k  +  1 )  e.  ( ZZ>= `  N
) )
7628, 31, 34, 34, 39, 72uzind4 10535 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  ( ZZ>= `  N
)  ->  ( ph  ->  ( P `  (
k  +  1 ) )  =  ( P `
 N ) ) )
7775, 25, 76sylc 59 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
k  +  1 )  e.  ( ZZ>= `  N
) )  ->  ( P `  ( k  +  1 ) )  =  ( P `  N ) )
7874, 77eqtr4d 2472 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
k  +  1 )  e.  ( ZZ>= `  N
) )  ->  ( P `  M )  =  ( P `  ( k  +  1 ) ) )
7978eleq2d 2504 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
k  +  1 )  e.  ( ZZ>= `  N
) )  ->  (
k  e.  ( P `
 M )  <->  k  e.  ( P `  ( k  +  1 ) ) ) )
801ad2antrr 708 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
k  +  1 )  e.  ( ZZ>= `  N
) )  ->  A  C_ 
NN0 )
812ad2antrr 708 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
k  +  1 )  e.  ( ZZ>= `  N
) )  ->  B  C_ 
NN0 )
82 simplr 733 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
k  +  1 )  e.  ( ZZ>= `  N
) )  ->  k  e.  NN0 )
8380, 81, 3, 82smuval 12994 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
k  +  1 )  e.  ( ZZ>= `  N
) )  ->  (
k  e.  ( A smul 
B )  <->  k  e.  ( P `  ( k  +  1 ) ) ) )
8479, 83bitr4d 249 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
k  +  1 )  e.  ( ZZ>= `  N
) )  ->  (
k  e.  ( P `
 M )  <->  k  e.  ( A smul  B )
) )
85 simpr 449 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
8685nn0zd 10374 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  ZZ )
8786peano2zd 10379 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( k  +  1 )  e.  ZZ )
885nn0zd 10374 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
8988adantr 453 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  N  e.  ZZ )
90 uztric 10508 . . . . . 6  |-  ( ( ( k  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  ( k  +  1 ) )  \/  ( k  +  1 )  e.  ( ZZ>= `  N ) ) )
9187, 89, 90syl2anc 644 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( N  e.  ( ZZ>= `  ( k  +  1 ) )  \/  ( k  +  1 )  e.  (
ZZ>= `  N ) ) )
9223, 84, 91mpjaodan 763 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( k  e.  ( P `  M
)  <->  k  e.  ( A smul  B ) ) )
9392ex 425 . . 3  |-  ( ph  ->  ( k  e.  NN0  ->  ( k  e.  ( P `  M )  <-> 
k  e.  ( A smul 
B ) ) ) )
9411, 15, 93pm5.21ndd 345 . 2  |-  ( ph  ->  ( k  e.  ( P `  M )  <-> 
k  e.  ( A smul 
B ) ) )
9594eqrdv 2435 1  |-  ( ph  ->  ( P `  M
)  =  ( A smul 
B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2706   {crab 2710    C_ wss 3321   (/)c0 3629   ifcif 3740   ~Pcpw 3800   class class class wbr 4213    e. cmpt 4267   -->wf 5451   ` cfv 5455  (class class class)co 6082    e. cmpt2 6084   RRcr 8990   0cc0 8991   1c1 8992    + caddc 8994    < clt 9121    <_ cle 9122    - cmin 9292   NN0cn0 10222   ZZcz 10283   ZZ>=cuz 10489  ..^cfzo 11136    seq cseq 11324   sadd csad 12933   smul csmu 12934
This theorem is referenced by:  smupval  13001
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-inf2 7597  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068  ax-pre-sup 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-xor 1315  df-tru 1329  df-had 1390  df-cad 1391  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-disj 4184  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-se 4543  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-isom 5464  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-1o 6725  df-2o 6726  df-oadd 6729  df-er 6906  df-map 7021  df-pm 7022  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-sup 7447  df-oi 7480  df-card 7827  df-cda 8049  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-div 9679  df-nn 10002  df-2 10059  df-3 10060  df-n0 10223  df-z 10284  df-uz 10490  df-rp 10614  df-fz 11045  df-fzo 11137  df-fl 11203  df-mod 11252  df-seq 11325  df-exp 11384  df-hash 11620  df-cj 11905  df-re 11906  df-im 11907  df-sqr 12041  df-abs 12042  df-clim 12283  df-sum 12481  df-dvds 12854  df-bits 12935  df-sad 12964  df-smu 12989
  Copyright terms: Public domain W3C validator