Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sndisj Structured version   Unicode version

Theorem sndisj 4196
 Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
sndisj Disj

Proof of Theorem sndisj
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 4176 . 2 Disj
2 moeq 3102 . . 3
3 simpr 448 . . . . . 6
4 elsn 3821 . . . . . 6
53, 4sylib 189 . . . . 5
65eqcomd 2440 . . . 4
76moimi 2327 . . 3
82, 7ax-mp 8 . 2
91, 8mpgbir 1559 1 Disj
 Colors of variables: wff set class Syntax hints:   wa 359   wcel 1725  wmo 2281  csn 3806  Disj wdisj 4174 This theorem is referenced by:  0disj  4197  sibfof  24646 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-rmo 2705  df-v 2950  df-sn 3812  df-disj 4175
 Copyright terms: Public domain W3C validator