Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  snec Structured version   Unicode version

Theorem snec 6967
 Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
snec.1
Assertion
Ref Expression
snec

Proof of Theorem snec
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snec.1 . . . 4
2 eceq1 6941 . . . . 5
32eqeq2d 2447 . . . 4
41, 3rexsn 3850 . . 3
54abbii 2548 . 2
6 df-qs 6911 . 2
7 df-sn 3820 . 2
85, 6, 73eqtr4ri 2467 1
 Colors of variables: wff set class Syntax hints:   wceq 1652   wcel 1725  cab 2422  wrex 2706  cvv 2956  csn 3814  cec 6903  cqs 6904 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-xp 4884  df-cnv 4886  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-ec 6907  df-qs 6911
 Copyright terms: Public domain W3C validator