Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  snelpw Structured version   Unicode version

Theorem snelpw 4410
 Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by NM, 1-Apr-1998.)
Hypothesis
Ref Expression
snelpw.1
Assertion
Ref Expression
snelpw

Proof of Theorem snelpw
StepHypRef Expression
1 snelpw.1 . . 3
21snss 3926 . 2
3 snex 4405 . . 3
43elpw 3805 . 2
52, 4bitr4i 244 1
 Colors of variables: wff set class Syntax hints:   wb 177   wcel 1725  cvv 2956   wss 3320  cpw 3799  csn 3814 This theorem is referenced by:  dis2ndc  17523  dislly  17560 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-pw 3801  df-sn 3820  df-pr 3821
 Copyright terms: Public domain W3C validator