Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snelpwrVD Structured version   Unicode version

Theorem snelpwrVD 28880
 Description: Virtual deduction proof of snelpwi 4401. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snelpwrVD

Proof of Theorem snelpwrVD
StepHypRef Expression
1 snex 4397 . . 3
2 idn1 28602 . . . 4
3 snssi 3934 . . . 4
42, 3e1_ 28665 . . 3
5 elpwg 3798 . . . 4
65biimprd 215 . . 3
71, 4, 6e01 28729 . 2
87in1 28599 1
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1725  cvv 2948   wss 3312  cpw 3791  csn 3806 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-pw 3793  df-sn 3812  df-pr 3813  df-vd1 28598
 Copyright terms: Public domain W3C validator