Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sneqr Unicode version

Theorem sneqr 3796
 Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.)
Hypothesis
Ref Expression
sneqr.1
Assertion
Ref Expression
sneqr

Proof of Theorem sneqr
StepHypRef Expression
1 sneqr.1 . . . 4
21snid 3680 . . 3
3 eleq2 2357 . . 3
42, 3mpbii 202 . 2
51elsnc 3676 . 2
64, 5sylib 188 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1632   wcel 1696  cvv 2801  csn 3653 This theorem is referenced by:  snsssn  3797  sneqrg  3798  opth1  4260  opthwiener  4284  canth2  7030  axcc2lem  8078  dis2ndc  17202  axlowdim1  24659  wopprc  27226 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-sn 3659
 Copyright terms: Public domain W3C validator