Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snssiALTVD Structured version   Unicode version

Theorem snssiALTVD 28939
 Description: Virtual deduction proof of snssiALT 28940. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snssiALTVD

Proof of Theorem snssiALTVD
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfss2 3337 . . 3
2 idn1 28665 . . . . . 6
3 idn2 28714 . . . . . . 7
4 elsn 3829 . . . . . . 7
53, 4e2bi 28733 . . . . . 6
6 eleq1a 2505 . . . . . 6
72, 5, 6e12 28836 . . . . 5
87in2 28706 . . . 4
98gen11 28717 . . 3
10 bi2 190 . . 3
111, 9, 10e01 28792 . 2
1211in1 28662 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1549   wceq 1652   wcel 1725   wss 3320  csn 3814 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-in 3327  df-ss 3334  df-sn 3820  df-vd1 28661  df-vd2 28670
 Copyright terms: Public domain W3C validator