MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsssn Unicode version

Theorem snsssn 3797
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.)
Hypothesis
Ref Expression
sneqr.1  |-  A  e. 
_V
Assertion
Ref Expression
snsssn  |-  ( { A }  C_  { B }  ->  A  =  B )

Proof of Theorem snsssn
StepHypRef Expression
1 sssn 3788 . 2  |-  ( { A }  C_  { B } 
<->  ( { A }  =  (/)  \/  { A }  =  { B } ) )
2 sneqr.1 . . . . . 6  |-  A  e. 
_V
32snnz 3757 . . . . 5  |-  { A }  =/=  (/)
4 df-ne 2461 . . . . 5  |-  ( { A }  =/=  (/)  <->  -.  { A }  =  (/) )
53, 4mpbi 199 . . . 4  |-  -.  { A }  =  (/)
65pm2.21i 123 . . 3  |-  ( { A }  =  (/)  ->  A  =  B )
72sneqr 3796 . . 3  |-  ( { A }  =  { B }  ->  A  =  B )
86, 7jaoi 368 . 2  |-  ( ( { A }  =  (/) 
\/  { A }  =  { B } )  ->  A  =  B )
91, 8sylbi 187 1  |-  ( { A }  C_  { B }  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    = wceq 1632    e. wcel 1696    =/= wne 2459   _Vcvv 2801    C_ wss 3165   (/)c0 3468   {csn 3653
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-v 2803  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3469  df-sn 3659
  Copyright terms: Public domain W3C validator