MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snunioo Structured version   Unicode version

Theorem snunioo 11015
Description: The closure of one end of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
snunioo  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( { A }  u.  ( A (,) B ) )  =  ( A [,) B ) )

Proof of Theorem snunioo
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 957 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  A  e.  RR* )
2 iccid 10953 . . . 4  |-  ( A  e.  RR*  ->  ( A [,] A )  =  { A } )
31, 2syl 16 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( A [,] A )  =  { A } )
43uneq1d 3492 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( A [,] A
)  u.  ( A (,) B ) )  =  ( { A }  u.  ( A (,) B ) ) )
5 simp2 958 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  B  e.  RR* )
6 xrleid 10735 . . . 4  |-  ( A  e.  RR*  ->  A  <_  A )
71, 6syl 16 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  A  <_  A )
8 simp3 959 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  A  <  B )
9 df-icc 10915 . . . 4  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
10 df-ioo 10912 . . . 4  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
11 xrltnle 9136 . . . 4  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  <->  -.  w  <_  A ) )
12 df-ico 10914 . . . 4  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
13 xrlelttr 10738 . . . 4  |-  ( ( w  e.  RR*  /\  A  e.  RR*  /\  B  e. 
RR* )  ->  (
( w  <_  A  /\  A  <  B )  ->  w  <  B
) )
14 xrltle 10734 . . . . . 6  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  ->  A  <_  w ) )
15143adant1 975 . . . . 5  |-  ( ( A  e.  RR*  /\  A  e.  RR*  /\  w  e. 
RR* )  ->  ( A  <  w  ->  A  <_  w ) )
1615adantld 454 . . . 4  |-  ( ( A  e.  RR*  /\  A  e.  RR*  /\  w  e. 
RR* )  ->  (
( A  <_  A  /\  A  <  w )  ->  A  <_  w
) )
179, 10, 11, 12, 13, 16ixxun 10924 . . 3  |-  ( ( ( A  e.  RR*  /\  A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <_  A  /\  A  <  B ) )  -> 
( ( A [,] A )  u.  ( A (,) B ) )  =  ( A [,) B ) )
181, 1, 5, 7, 8, 17syl32anc 1192 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( A [,] A
)  u.  ( A (,) B ) )  =  ( A [,) B ) )
194, 18eqtr3d 2469 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( { A }  u.  ( A (,) B ) )  =  ( A [,) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725    u. cun 3310   {csn 3806   class class class wbr 4204  (class class class)co 6073   RR*cxr 9111    < clt 9112    <_ cle 9113   (,)cioo 10908   [,)cico 10910   [,]cicc 10911
This theorem is referenced by:  prunioo  11017  ioojoin  11019  icombl1  19449  ioombl  19451  mbfposadd  26244  itg2addnclem2  26247
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-pre-lttri 9056  ax-pre-lttrn 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-ioo 10912  df-ico 10914  df-icc 10915
  Copyright terms: Public domain W3C validator