MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  solin Structured version   Unicode version

Theorem solin 4529
Description: A strict order relation is linear (satisfies trichotomy). (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
solin  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  \/  B  =  C  \/  C R B ) )

Proof of Theorem solin
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4218 . . . . 5  |-  ( x  =  B  ->  (
x R y  <->  B R
y ) )
2 eqeq1 2444 . . . . 5  |-  ( x  =  B  ->  (
x  =  y  <->  B  =  y ) )
3 breq2 4219 . . . . 5  |-  ( x  =  B  ->  (
y R x  <->  y R B ) )
41, 2, 33orbi123d 1254 . . . 4  |-  ( x  =  B  ->  (
( x R y  \/  x  =  y  \/  y R x )  <->  ( B R y  \/  B  =  y  \/  y R B ) ) )
54imbi2d 309 . . 3  |-  ( x  =  B  ->  (
( R  Or  A  ->  ( x R y  \/  x  =  y  \/  y R x ) )  <->  ( R  Or  A  ->  ( B R y  \/  B  =  y  \/  y R B ) ) ) )
6 breq2 4219 . . . . 5  |-  ( y  =  C  ->  ( B R y  <->  B R C ) )
7 eqeq2 2447 . . . . 5  |-  ( y  =  C  ->  ( B  =  y  <->  B  =  C ) )
8 breq1 4218 . . . . 5  |-  ( y  =  C  ->  (
y R B  <->  C R B ) )
96, 7, 83orbi123d 1254 . . . 4  |-  ( y  =  C  ->  (
( B R y  \/  B  =  y  \/  y R B )  <->  ( B R C  \/  B  =  C  \/  C R B ) ) )
109imbi2d 309 . . 3  |-  ( y  =  C  ->  (
( R  Or  A  ->  ( B R y  \/  B  =  y  \/  y R B ) )  <->  ( R  Or  A  ->  ( B R C  \/  B  =  C  \/  C R B ) ) ) )
11 df-so 4507 . . . . 5  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
12 rsp2 2770 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x )  ->  ( ( x  e.  A  /\  y  e.  A )  ->  (
x R y  \/  x  =  y  \/  y R x ) ) )
1312adantl 454 . . . . 5  |-  ( ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x ) )  ->  ( (
x  e.  A  /\  y  e.  A )  ->  ( x R y  \/  x  =  y  \/  y R x ) ) )
1411, 13sylbi 189 . . . 4  |-  ( R  Or  A  ->  (
( x  e.  A  /\  y  e.  A
)  ->  ( x R y  \/  x  =  y  \/  y R x ) ) )
1514com12 30 . . 3  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( R  Or  A  ->  ( x R y  \/  x  =  y  \/  y R x ) ) )
165, 10, 15vtocl2ga 3021 . 2  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( R  Or  A  ->  ( B R C  \/  B  =  C  \/  C R B ) ) )
1716impcom 421 1  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    \/ w3o 936    = wceq 1653    e. wcel 1726   A.wral 2707   class class class wbr 4215    Po wpo 4504    Or wor 4505
This theorem is referenced by:  sotric  4532  sotrieq  4533  somo  4540  wecmpep  4577  soxp  6462  sorpssi  6531  wemaplem2  7519  fpwwe2lem12  8521  fpwwe2lem13  8522  lttri4  9164  xmullem  10848  xmulasslem  10869  ofldsqr  24245  socnv  25393  wfrlem10  25552  slttri  25633  fnwe2lem3  27141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216  df-so 4507
  Copyright terms: Public domain W3C validator