MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  somincom Unicode version

Theorem somincom 5080
Description: Commutativity of minimum in a total order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
somincom  |-  ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  ->  if ( A R B ,  A ,  B )  =  if ( B R A ,  B ,  A ) )

Proof of Theorem somincom
StepHypRef Expression
1 iftrue 3571 . . . 4  |-  ( A R B  ->  if ( A R B ,  A ,  B )  =  A )
21adantl 452 . . 3  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  /\  A R B )  ->  if ( A R B ,  A ,  B )  =  A )
3 so2nr 4338 . . . . . 6  |-  ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  ->  -.  ( A R B  /\  B R A ) )
4 nan 563 . . . . . 6  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  ->  -.  ( A R B  /\  B R A ) )  <-> 
( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X )
)  /\  A R B )  ->  -.  B R A ) )
53, 4mpbi 199 . . . . 5  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  /\  A R B )  ->  -.  B R A )
6 iffalse 3572 . . . . 5  |-  ( -.  B R A  ->  if ( B R A ,  B ,  A
)  =  A )
75, 6syl 15 . . . 4  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  /\  A R B )  ->  if ( B R A ,  B ,  A )  =  A )
87eqcomd 2288 . . 3  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  /\  A R B )  ->  A  =  if ( B R A ,  B ,  A ) )
92, 8eqtrd 2315 . 2  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  /\  A R B )  ->  if ( A R B ,  A ,  B )  =  if ( B R A ,  B ,  A ) )
10 iffalse 3572 . . . 4  |-  ( -.  A R B  ->  if ( A R B ,  A ,  B
)  =  B )
1110adantl 452 . . 3  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  /\  -.  A R B )  ->  if ( A R B ,  A ,  B
)  =  B )
12 sotric 4340 . . . . . 6  |-  ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A R B  <->  -.  ( A  =  B  \/  B R A ) ) )
1312con2bid 319 . . . . 5  |-  ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( A  =  B  \/  B R A )  <->  -.  A R B ) )
14 ifeq2 3570 . . . . . . 7  |-  ( A  =  B  ->  if ( B R A ,  B ,  A )  =  if ( B R A ,  B ,  B ) )
15 ifid 3597 . . . . . . 7  |-  if ( B R A ,  B ,  B )  =  B
1614, 15syl6req 2332 . . . . . 6  |-  ( A  =  B  ->  B  =  if ( B R A ,  B ,  A ) )
17 iftrue 3571 . . . . . . 7  |-  ( B R A  ->  if ( B R A ,  B ,  A )  =  B )
1817eqcomd 2288 . . . . . 6  |-  ( B R A  ->  B  =  if ( B R A ,  B ,  A ) )
1916, 18jaoi 368 . . . . 5  |-  ( ( A  =  B  \/  B R A )  ->  B  =  if ( B R A ,  B ,  A ) )
2013, 19syl6bir 220 . . . 4  |-  ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( -.  A R B  ->  B  =  if ( B R A ,  B ,  A ) ) )
2120imp 418 . . 3  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  /\  -.  A R B )  ->  B  =  if ( B R A ,  B ,  A ) )
2211, 21eqtrd 2315 . 2  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  /\  -.  A R B )  ->  if ( A R B ,  A ,  B
)  =  if ( B R A ,  B ,  A )
)
239, 22pm2.61dan 766 1  |-  ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  ->  if ( A R B ,  A ,  B )  =  if ( B R A ,  B ,  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   ifcif 3565   class class class wbr 4023    Or wor 4313
This theorem is referenced by:  somin2  5081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-po 4314  df-so 4315
  Copyright terms: Public domain W3C validator