MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  somo Structured version   Unicode version

Theorem somo 4540
Description: A totally ordered set has at most one minimal element. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
somo  |-  ( R  Or  A  ->  E* x  e.  A A. y  e.  A  -.  y R x )
Distinct variable groups:    x, y, A    x, R, y

Proof of Theorem somo
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 breq1 4218 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
y R z  <->  x R
z ) )
21notbid 287 . . . . . . . . . 10  |-  ( y  =  x  ->  ( -.  y R z  <->  -.  x R z ) )
32rspcv 3050 . . . . . . . . 9  |-  ( x  e.  A  ->  ( A. y  e.  A  -.  y R z  ->  -.  x R z ) )
4 breq1 4218 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
y R x  <->  z R x ) )
54notbid 287 . . . . . . . . . 10  |-  ( y  =  z  ->  ( -.  y R x  <->  -.  z R x ) )
65rspcv 3050 . . . . . . . . 9  |-  ( z  e.  A  ->  ( A. y  e.  A  -.  y R x  ->  -.  z R x ) )
73, 6im2anan9 810 . . . . . . . 8  |-  ( ( x  e.  A  /\  z  e.  A )  ->  ( ( A. y  e.  A  -.  y R z  /\  A. y  e.  A  -.  y R x )  -> 
( -.  x R z  /\  -.  z R x ) ) )
87ancomsd 442 . . . . . . 7  |-  ( ( x  e.  A  /\  z  e.  A )  ->  ( ( A. y  e.  A  -.  y R x  /\  A. y  e.  A  -.  y R z )  -> 
( -.  x R z  /\  -.  z R x ) ) )
98imp 420 . . . . . 6  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( A. y  e.  A  -.  y R x  /\  A. y  e.  A  -.  y R z ) )  ->  ( -.  x R z  /\  -.  z R x ) )
10 ioran 478 . . . . . . 7  |-  ( -.  ( x R z  \/  z R x )  <->  ( -.  x R z  /\  -.  z R x ) )
11 solin 4529 . . . . . . . . 9  |-  ( ( R  Or  A  /\  ( x  e.  A  /\  z  e.  A
) )  ->  (
x R z  \/  x  =  z  \/  z R x ) )
12 df-3or 938 . . . . . . . . . 10  |-  ( ( x R z  \/  x  =  z  \/  z R x )  <-> 
( ( x R z  \/  x  =  z )  \/  z R x ) )
13 or32 515 . . . . . . . . . 10  |-  ( ( ( x R z  \/  x  =  z )  \/  z R x )  <->  ( (
x R z  \/  z R x )  \/  x  =  z ) )
1412, 13bitri 242 . . . . . . . . 9  |-  ( ( x R z  \/  x  =  z  \/  z R x )  <-> 
( ( x R z  \/  z R x )  \/  x  =  z ) )
1511, 14sylib 190 . . . . . . . 8  |-  ( ( R  Or  A  /\  ( x  e.  A  /\  z  e.  A
) )  ->  (
( x R z  \/  z R x )  \/  x  =  z ) )
1615ord 368 . . . . . . 7  |-  ( ( R  Or  A  /\  ( x  e.  A  /\  z  e.  A
) )  ->  ( -.  ( x R z  \/  z R x )  ->  x  =  z ) )
1710, 16syl5bir 211 . . . . . 6  |-  ( ( R  Or  A  /\  ( x  e.  A  /\  z  e.  A
) )  ->  (
( -.  x R z  /\  -.  z R x )  ->  x  =  z )
)
189, 17syl5 31 . . . . 5  |-  ( ( R  Or  A  /\  ( x  e.  A  /\  z  e.  A
) )  ->  (
( ( x  e.  A  /\  z  e.  A )  /\  ( A. y  e.  A  -.  y R x  /\  A. y  e.  A  -.  y R z ) )  ->  x  =  z ) )
1918exp4b 592 . . . 4  |-  ( R  Or  A  ->  (
( x  e.  A  /\  z  e.  A
)  ->  ( (
x  e.  A  /\  z  e.  A )  ->  ( ( A. y  e.  A  -.  y R x  /\  A. y  e.  A  -.  y R z )  ->  x  =  z )
) ) )
2019pm2.43d 47 . . 3  |-  ( R  Or  A  ->  (
( x  e.  A  /\  z  e.  A
)  ->  ( ( A. y  e.  A  -.  y R x  /\  A. y  e.  A  -.  y R z )  ->  x  =  z )
) )
2120ralrimivv 2799 . 2  |-  ( R  Or  A  ->  A. x  e.  A  A. z  e.  A  ( ( A. y  e.  A  -.  y R x  /\  A. y  e.  A  -.  y R z )  ->  x  =  z )
)
22 breq2 4219 . . . . 5  |-  ( x  =  z  ->  (
y R x  <->  y R
z ) )
2322notbid 287 . . . 4  |-  ( x  =  z  ->  ( -.  y R x  <->  -.  y R z ) )
2423ralbidv 2727 . . 3  |-  ( x  =  z  ->  ( A. y  e.  A  -.  y R x  <->  A. y  e.  A  -.  y R z ) )
2524rmo4 3129 . 2  |-  ( E* x  e.  A A. y  e.  A  -.  y R x  <->  A. x  e.  A  A. z  e.  A  ( ( A. y  e.  A  -.  y R x  /\  A. y  e.  A  -.  y R z )  ->  x  =  z )
)
2621, 25sylibr 205 1  |-  ( R  Or  A  ->  E* x  e.  A A. y  e.  A  -.  y R x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 359    /\ wa 360    \/ w3o 936    e. wcel 1726   A.wral 2707   E*wrmo 2710   class class class wbr 4215    Or wor 4505
This theorem is referenced by:  wereu  4581  wereu2  4582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rmo 2715  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216  df-so 4507
  Copyright terms: Public domain W3C validator