MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  son2lpi Unicode version

Theorem son2lpi 5174
Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1  |-  R  Or  S
soi.2  |-  R  C_  ( S  X.  S
)
Assertion
Ref Expression
son2lpi  |-  -.  ( A R B  /\  B R A )

Proof of Theorem son2lpi
StepHypRef Expression
1 soi.1 . . 3  |-  R  Or  S
2 soi.2 . . 3  |-  R  C_  ( S  X.  S
)
31, 2soirri 5172 . 2  |-  -.  A R A
41, 2sotri 5173 . 2  |-  ( ( A R B  /\  B R A )  ->  A R A )
53, 4mto 167 1  |-  -.  ( A R B  /\  B R A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 358    C_ wss 3238   class class class wbr 4125    Or wor 4416    X. cxp 4790
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-br 4126  df-opab 4180  df-po 4417  df-so 4418  df-xp 4798
  Copyright terms: Public domain W3C validator