MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpss Unicode version

Theorem sorpss 6298
Description: Express strict ordering under proper subsets, i.e. the notion of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
sorpss  |-  ( [ C.]  Or  A  <->  A. x  e.  A  A. y  e.  A  ( x  C_  y  \/  y  C_  x )
)
Distinct variable group:    x, y, A

Proof of Theorem sorpss
StepHypRef Expression
1 porpss 6297 . . 3  |- [ C.]  Po  A
21biantrur 492 . 2  |-  ( A. x  e.  A  A. y  e.  A  (
x [ C.]  y  \/  x  =  y  \/  y [ C.]  x )  <->  ( [ C.]  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x [ C.]  y  \/  x  =  y  \/  y [ C.]  x ) ) )
3 sspsstri 3291 . . . 4  |-  ( ( x  C_  y  \/  y  C_  x )  <->  ( x  C.  y  \/  x  =  y  \/  y  C.  x ) )
4 vex 2804 . . . . . 6  |-  y  e. 
_V
54brrpss 6296 . . . . 5  |-  ( x [
C.]  y  <->  x  C.  y )
6 biid 227 . . . . 5  |-  ( x  =  y  <->  x  =  y )
7 vex 2804 . . . . . 6  |-  x  e. 
_V
87brrpss 6296 . . . . 5  |-  ( y [
C.]  x  <->  y  C.  x )
95, 6, 83orbi123i 1141 . . . 4  |-  ( ( x [ C.]  y  \/  x  =  y  \/  y [ C.]  x )  <->  ( x  C.  y  \/  x  =  y  \/  y  C.  x ) )
103, 9bitr4i 243 . . 3  |-  ( ( x  C_  y  \/  y  C_  x )  <->  ( x [ C.]  y  \/  x  =  y  \/  y [ C.]  x ) )
11102ralbii 2582 . 2  |-  ( A. x  e.  A  A. y  e.  A  (
x  C_  y  \/  y  C_  x )  <->  A. x  e.  A  A. y  e.  A  ( x [ C.]  y  \/  x  =  y  \/  y [ C.]  x ) )
12 df-so 4331 . 2  |-  ( [ C.]  Or  A  <->  ( [ C.]  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x [ C.]  y  \/  x  =  y  \/  y [ C.]  x )
) )
132, 11, 123bitr4ri 269 1  |-  ( [ C.]  Or  A  <->  A. x  e.  A  A. y  e.  A  ( x  C_  y  \/  y  C_  x )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 176    \/ wo 357    /\ wa 358    \/ w3o 933   A.wral 2556    C_ wss 3165    C. wpss 3166   class class class wbr 4039    Po wpo 4328    Or wor 4329   [ C.] crpss 6292
This theorem is referenced by:  sorpsscmpl  6304  enfin2i  7963  fin1a2lem13  8054
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-rpss 6293
  Copyright terms: Public domain W3C validator