MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpssuni Unicode version

Theorem sorpssuni 6286
Description: In a chain of sets, a maximal element is the union of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
sorpssuni  |-  ( [ C.]  Or  Y  ->  ( E. u  e.  Y  A. v  e.  Y  -.  u  C.  v  <->  U. Y  e.  Y ) )
Distinct variable group:    u, Y, v

Proof of Theorem sorpssuni
StepHypRef Expression
1 sorpssi 6283 . . . . . . . . . 10  |-  ( ( [
C.]  Or  Y  /\  ( u  e.  Y  /\  v  e.  Y
) )  ->  (
u  C_  v  \/  v  C_  u ) )
21anassrs 629 . . . . . . . . 9  |-  ( ( ( [ C.]  Or  Y  /\  u  e.  Y
)  /\  v  e.  Y )  ->  (
u  C_  v  \/  v  C_  u ) )
3 sspss 3275 . . . . . . . . . . 11  |-  ( u 
C_  v  <->  ( u  C.  v  \/  u  =  v ) )
4 orel1 371 . . . . . . . . . . . 12  |-  ( -.  u  C.  v  -> 
( ( u  C.  v  \/  u  =  v )  ->  u  =  v ) )
5 eqimss2 3231 . . . . . . . . . . . 12  |-  ( u  =  v  ->  v  C_  u )
64, 5syl6com 31 . . . . . . . . . . 11  |-  ( ( u  C.  v  \/  u  =  v )  ->  ( -.  u  C.  v  ->  v  C_  u ) )
73, 6sylbi 187 . . . . . . . . . 10  |-  ( u 
C_  v  ->  ( -.  u  C.  v  -> 
v  C_  u )
)
8 ax-1 5 . . . . . . . . . 10  |-  ( v 
C_  u  ->  ( -.  u  C.  v  -> 
v  C_  u )
)
97, 8jaoi 368 . . . . . . . . 9  |-  ( ( u  C_  v  \/  v  C_  u )  -> 
( -.  u  C.  v  ->  v  C_  u
) )
102, 9syl 15 . . . . . . . 8  |-  ( ( ( [ C.]  Or  Y  /\  u  e.  Y
)  /\  v  e.  Y )  ->  ( -.  u  C.  v  -> 
v  C_  u )
)
1110ralimdva 2621 . . . . . . 7  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y )  ->  ( A. v  e.  Y  -.  u  C.  v  ->  A. v  e.  Y  v  C_  u ) )
12113impia 1148 . . . . . 6  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  A. v  e.  Y  v  C_  u )
13 unissb 3857 . . . . . 6  |-  ( U. Y  C_  u  <->  A. v  e.  Y  v  C_  u )
1412, 13sylibr 203 . . . . 5  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  U. Y  C_  u )
15 elssuni 3855 . . . . . 6  |-  ( u  e.  Y  ->  u  C_ 
U. Y )
16153ad2ant2 977 . . . . 5  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  u  C_  U. Y )
1714, 16eqssd 3196 . . . 4  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  U. Y  =  u
)
18 simp2 956 . . . 4  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  u  e.  Y )
1917, 18eqeltrd 2357 . . 3  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  U. Y  e.  Y
)
2019rexlimdv3a 2669 . 2  |-  ( [ C.]  Or  Y  ->  ( E. u  e.  Y  A. v  e.  Y  -.  u  C.  v  ->  U. Y  e.  Y ) )
21 elssuni 3855 . . . . 5  |-  ( v  e.  Y  ->  v  C_ 
U. Y )
22 ssnpss 3279 . . . . 5  |-  ( v 
C_  U. Y  ->  -.  U. Y  C.  v )
2321, 22syl 15 . . . 4  |-  ( v  e.  Y  ->  -.  U. Y  C.  v )
2423rgen 2608 . . 3  |-  A. v  e.  Y  -.  U. Y  C.  v
25 psseq1 3263 . . . . . 6  |-  ( u  =  U. Y  -> 
( u  C.  v  <->  U. Y  C.  v ) )
2625notbid 285 . . . . 5  |-  ( u  =  U. Y  -> 
( -.  u  C.  v 
<->  -.  U. Y  C.  v ) )
2726ralbidv 2563 . . . 4  |-  ( u  =  U. Y  -> 
( A. v  e.  Y  -.  u  C.  v 
<-> 
A. v  e.  Y  -.  U. Y  C.  v
) )
2827rspcev 2884 . . 3  |-  ( ( U. Y  e.  Y  /\  A. v  e.  Y  -.  U. Y  C.  v
)  ->  E. u  e.  Y  A. v  e.  Y  -.  u  C.  v )
2924, 28mpan2 652 . 2  |-  ( U. Y  e.  Y  ->  E. u  e.  Y  A. v  e.  Y  -.  u  C.  v )
3020, 29impbid1 194 1  |-  ( [ C.]  Or  Y  ->  ( E. u  e.  Y  A. v  e.  Y  -.  u  C.  v  <->  U. Y  e.  Y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152    C. wpss 3153   U.cuni 3827    Or wor 4313   [ C.] crpss 6276
This theorem is referenced by:  fin2i2  7944  isfin2-2  7945  fin12  8039
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-so 4315  df-xp 4695  df-rel 4696  df-rpss 6277
  Copyright terms: Public domain W3C validator