MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpssuni Unicode version

Theorem sorpssuni 6467
Description: In a chain of sets, a maximal element is the union of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
sorpssuni  |-  ( [ C.]  Or  Y  ->  ( E. u  e.  Y  A. v  e.  Y  -.  u  C.  v  <->  U. Y  e.  Y ) )
Distinct variable group:    u, Y, v

Proof of Theorem sorpssuni
StepHypRef Expression
1 sorpssi 6464 . . . . . . . . . 10  |-  ( ( [
C.]  Or  Y  /\  ( u  e.  Y  /\  v  e.  Y
) )  ->  (
u  C_  v  \/  v  C_  u ) )
21anassrs 630 . . . . . . . . 9  |-  ( ( ( [ C.]  Or  Y  /\  u  e.  Y
)  /\  v  e.  Y )  ->  (
u  C_  v  \/  v  C_  u ) )
3 sspss 3389 . . . . . . . . . . 11  |-  ( u 
C_  v  <->  ( u  C.  v  \/  u  =  v ) )
4 orel1 372 . . . . . . . . . . . 12  |-  ( -.  u  C.  v  -> 
( ( u  C.  v  \/  u  =  v )  ->  u  =  v ) )
5 eqimss2 3344 . . . . . . . . . . . 12  |-  ( u  =  v  ->  v  C_  u )
64, 5syl6com 33 . . . . . . . . . . 11  |-  ( ( u  C.  v  \/  u  =  v )  ->  ( -.  u  C.  v  ->  v  C_  u ) )
73, 6sylbi 188 . . . . . . . . . 10  |-  ( u 
C_  v  ->  ( -.  u  C.  v  -> 
v  C_  u )
)
8 ax-1 5 . . . . . . . . . 10  |-  ( v 
C_  u  ->  ( -.  u  C.  v  -> 
v  C_  u )
)
97, 8jaoi 369 . . . . . . . . 9  |-  ( ( u  C_  v  \/  v  C_  u )  -> 
( -.  u  C.  v  ->  v  C_  u
) )
102, 9syl 16 . . . . . . . 8  |-  ( ( ( [ C.]  Or  Y  /\  u  e.  Y
)  /\  v  e.  Y )  ->  ( -.  u  C.  v  -> 
v  C_  u )
)
1110ralimdva 2727 . . . . . . 7  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y )  ->  ( A. v  e.  Y  -.  u  C.  v  ->  A. v  e.  Y  v  C_  u ) )
12113impia 1150 . . . . . 6  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  A. v  e.  Y  v  C_  u )
13 unissb 3987 . . . . . 6  |-  ( U. Y  C_  u  <->  A. v  e.  Y  v  C_  u )
1412, 13sylibr 204 . . . . 5  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  U. Y  C_  u )
15 elssuni 3985 . . . . . 6  |-  ( u  e.  Y  ->  u  C_ 
U. Y )
16153ad2ant2 979 . . . . 5  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  u  C_  U. Y )
1714, 16eqssd 3308 . . . 4  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  U. Y  =  u
)
18 simp2 958 . . . 4  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  u  e.  Y )
1917, 18eqeltrd 2461 . . 3  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  U. Y  e.  Y
)
2019rexlimdv3a 2775 . 2  |-  ( [ C.]  Or  Y  ->  ( E. u  e.  Y  A. v  e.  Y  -.  u  C.  v  ->  U. Y  e.  Y ) )
21 elssuni 3985 . . . . 5  |-  ( v  e.  Y  ->  v  C_ 
U. Y )
22 ssnpss 3393 . . . . 5  |-  ( v 
C_  U. Y  ->  -.  U. Y  C.  v )
2321, 22syl 16 . . . 4  |-  ( v  e.  Y  ->  -.  U. Y  C.  v )
2423rgen 2714 . . 3  |-  A. v  e.  Y  -.  U. Y  C.  v
25 psseq1 3377 . . . . . 6  |-  ( u  =  U. Y  -> 
( u  C.  v  <->  U. Y  C.  v ) )
2625notbid 286 . . . . 5  |-  ( u  =  U. Y  -> 
( -.  u  C.  v 
<->  -.  U. Y  C.  v ) )
2726ralbidv 2669 . . . 4  |-  ( u  =  U. Y  -> 
( A. v  e.  Y  -.  u  C.  v 
<-> 
A. v  e.  Y  -.  U. Y  C.  v
) )
2827rspcev 2995 . . 3  |-  ( ( U. Y  e.  Y  /\  A. v  e.  Y  -.  U. Y  C.  v
)  ->  E. u  e.  Y  A. v  e.  Y  -.  u  C.  v )
2924, 28mpan2 653 . 2  |-  ( U. Y  e.  Y  ->  E. u  e.  Y  A. v  e.  Y  -.  u  C.  v )
3020, 29impbid1 195 1  |-  ( [ C.]  Or  Y  ->  ( E. u  e.  Y  A. v  e.  Y  -.  u  C.  v  <->  U. Y  e.  Y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2649   E.wrex 2650    C_ wss 3263    C. wpss 3264   U.cuni 3957    Or wor 4443   [ C.] crpss 6457
This theorem is referenced by:  fin2i2  8131  isfin2-2  8132  fin12  8226
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-so 4445  df-xp 4824  df-rel 4825  df-rpss 6458
  Copyright terms: Public domain W3C validator