MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpssuni Structured version   Unicode version

Theorem sorpssuni 6523
Description: In a chain of sets, a maximal element is the union of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
sorpssuni  |-  ( [ C.]  Or  Y  ->  ( E. u  e.  Y  A. v  e.  Y  -.  u  C.  v  <->  U. Y  e.  Y ) )
Distinct variable group:    u, Y, v

Proof of Theorem sorpssuni
StepHypRef Expression
1 sorpssi 6520 . . . . . . . . . 10  |-  ( ( [
C.]  Or  Y  /\  ( u  e.  Y  /\  v  e.  Y
) )  ->  (
u  C_  v  \/  v  C_  u ) )
21anassrs 630 . . . . . . . . 9  |-  ( ( ( [ C.]  Or  Y  /\  u  e.  Y
)  /\  v  e.  Y )  ->  (
u  C_  v  \/  v  C_  u ) )
3 sspss 3438 . . . . . . . . . . 11  |-  ( u 
C_  v  <->  ( u  C.  v  \/  u  =  v ) )
4 orel1 372 . . . . . . . . . . . 12  |-  ( -.  u  C.  v  -> 
( ( u  C.  v  \/  u  =  v )  ->  u  =  v ) )
5 eqimss2 3393 . . . . . . . . . . . 12  |-  ( u  =  v  ->  v  C_  u )
64, 5syl6com 33 . . . . . . . . . . 11  |-  ( ( u  C.  v  \/  u  =  v )  ->  ( -.  u  C.  v  ->  v  C_  u ) )
73, 6sylbi 188 . . . . . . . . . 10  |-  ( u 
C_  v  ->  ( -.  u  C.  v  -> 
v  C_  u )
)
8 ax-1 5 . . . . . . . . . 10  |-  ( v 
C_  u  ->  ( -.  u  C.  v  -> 
v  C_  u )
)
97, 8jaoi 369 . . . . . . . . 9  |-  ( ( u  C_  v  \/  v  C_  u )  -> 
( -.  u  C.  v  ->  v  C_  u
) )
102, 9syl 16 . . . . . . . 8  |-  ( ( ( [ C.]  Or  Y  /\  u  e.  Y
)  /\  v  e.  Y )  ->  ( -.  u  C.  v  -> 
v  C_  u )
)
1110ralimdva 2776 . . . . . . 7  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y )  ->  ( A. v  e.  Y  -.  u  C.  v  ->  A. v  e.  Y  v  C_  u ) )
12113impia 1150 . . . . . 6  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  A. v  e.  Y  v  C_  u )
13 unissb 4037 . . . . . 6  |-  ( U. Y  C_  u  <->  A. v  e.  Y  v  C_  u )
1412, 13sylibr 204 . . . . 5  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  U. Y  C_  u )
15 elssuni 4035 . . . . . 6  |-  ( u  e.  Y  ->  u  C_ 
U. Y )
16153ad2ant2 979 . . . . 5  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  u  C_  U. Y )
1714, 16eqssd 3357 . . . 4  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  U. Y  =  u
)
18 simp2 958 . . . 4  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  u  e.  Y )
1917, 18eqeltrd 2509 . . 3  |-  ( ( [
C.]  Or  Y  /\  u  e.  Y  /\  A. v  e.  Y  -.  u  C.  v )  ->  U. Y  e.  Y
)
2019rexlimdv3a 2824 . 2  |-  ( [ C.]  Or  Y  ->  ( E. u  e.  Y  A. v  e.  Y  -.  u  C.  v  ->  U. Y  e.  Y ) )
21 elssuni 4035 . . . . 5  |-  ( v  e.  Y  ->  v  C_ 
U. Y )
22 ssnpss 3442 . . . . 5  |-  ( v 
C_  U. Y  ->  -.  U. Y  C.  v )
2321, 22syl 16 . . . 4  |-  ( v  e.  Y  ->  -.  U. Y  C.  v )
2423rgen 2763 . . 3  |-  A. v  e.  Y  -.  U. Y  C.  v
25 psseq1 3426 . . . . . 6  |-  ( u  =  U. Y  -> 
( u  C.  v  <->  U. Y  C.  v ) )
2625notbid 286 . . . . 5  |-  ( u  =  U. Y  -> 
( -.  u  C.  v 
<->  -.  U. Y  C.  v ) )
2726ralbidv 2717 . . . 4  |-  ( u  =  U. Y  -> 
( A. v  e.  Y  -.  u  C.  v 
<-> 
A. v  e.  Y  -.  U. Y  C.  v
) )
2827rspcev 3044 . . 3  |-  ( ( U. Y  e.  Y  /\  A. v  e.  Y  -.  U. Y  C.  v
)  ->  E. u  e.  Y  A. v  e.  Y  -.  u  C.  v )
2924, 28mpan2 653 . 2  |-  ( U. Y  e.  Y  ->  E. u  e.  Y  A. v  e.  Y  -.  u  C.  v )
3020, 29impbid1 195 1  |-  ( [ C.]  Or  Y  ->  ( E. u  e.  Y  A. v  e.  Y  -.  u  C.  v  <->  U. Y  e.  Y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698    C_ wss 3312    C. wpss 3313   U.cuni 4007    Or wor 4494   [ C.] crpss 6513
This theorem is referenced by:  fin2i2  8190  isfin2-2  8191  fin12  8285
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-so 4496  df-xp 4876  df-rel 4877  df-rpss 6514
  Copyright terms: Public domain W3C validator