MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sossfld Unicode version

Theorem sossfld 5136
Description: The base set of a strict order is contained in the field of the relation, except possibly for one element (note that  (/)  Or  { B }). (Contributed by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
sossfld  |-  ( ( R  Or  A  /\  B  e.  A )  ->  ( A  \  { B } )  C_  ( dom  R  u.  ran  R
) )

Proof of Theorem sossfld
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldifsn 3762 . . 3  |-  ( x  e.  ( A  \  { B } )  <->  ( x  e.  A  /\  x  =/=  B ) )
2 sotrieq 4357 . . . . . . 7  |-  ( ( R  Or  A  /\  ( x  e.  A  /\  B  e.  A
) )  ->  (
x  =  B  <->  -.  (
x R B  \/  B R x ) ) )
32necon2abid 2516 . . . . . 6  |-  ( ( R  Or  A  /\  ( x  e.  A  /\  B  e.  A
) )  ->  (
( x R B  \/  B R x )  <->  x  =/=  B
) )
43anass1rs 782 . . . . 5  |-  ( ( ( R  Or  A  /\  B  e.  A
)  /\  x  e.  A )  ->  (
( x R B  \/  B R x )  <->  x  =/=  B
) )
5 breldmg 4900 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  B  e.  A  /\  x R B )  ->  x  e.  dom  R )
653expia 1153 . . . . . . . . 9  |-  ( ( x  e.  A  /\  B  e.  A )  ->  ( x R B  ->  x  e.  dom  R ) )
76adantll 694 . . . . . . . 8  |-  ( ( ( R  Or  A  /\  x  e.  A
)  /\  B  e.  A )  ->  (
x R B  ->  x  e.  dom  R ) )
87an32s 779 . . . . . . 7  |-  ( ( ( R  Or  A  /\  B  e.  A
)  /\  x  e.  A )  ->  (
x R B  ->  x  e.  dom  R ) )
9 brelrng 4924 . . . . . . . . 9  |-  ( ( B  e.  A  /\  x  e.  A  /\  B R x )  ->  x  e.  ran  R )
1093expia 1153 . . . . . . . 8  |-  ( ( B  e.  A  /\  x  e.  A )  ->  ( B R x  ->  x  e.  ran  R ) )
1110adantll 694 . . . . . . 7  |-  ( ( ( R  Or  A  /\  B  e.  A
)  /\  x  e.  A )  ->  ( B R x  ->  x  e.  ran  R ) )
128, 11orim12d 811 . . . . . 6  |-  ( ( ( R  Or  A  /\  B  e.  A
)  /\  x  e.  A )  ->  (
( x R B  \/  B R x )  ->  ( x  e.  dom  R  \/  x  e.  ran  R ) ) )
13 elun 3329 . . . . . 6  |-  ( x  e.  ( dom  R  u.  ran  R )  <->  ( x  e.  dom  R  \/  x  e.  ran  R ) )
1412, 13syl6ibr 218 . . . . 5  |-  ( ( ( R  Or  A  /\  B  e.  A
)  /\  x  e.  A )  ->  (
( x R B  \/  B R x )  ->  x  e.  ( dom  R  u.  ran  R ) ) )
154, 14sylbird 226 . . . 4  |-  ( ( ( R  Or  A  /\  B  e.  A
)  /\  x  e.  A )  ->  (
x  =/=  B  ->  x  e.  ( dom  R  u.  ran  R ) ) )
1615expimpd 586 . . 3  |-  ( ( R  Or  A  /\  B  e.  A )  ->  ( ( x  e.  A  /\  x  =/= 
B )  ->  x  e.  ( dom  R  u.  ran  R ) ) )
171, 16syl5bi 208 . 2  |-  ( ( R  Or  A  /\  B  e.  A )  ->  ( x  e.  ( A  \  { B } )  ->  x  e.  ( dom  R  u.  ran  R ) ) )
1817ssrdv 3198 1  |-  ( ( R  Or  A  /\  B  e.  A )  ->  ( A  \  { B } )  C_  ( dom  R  u.  ran  R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    e. wcel 1696    =/= wne 2459    \ cdif 3162    u. cun 3163    C_ wss 3165   {csn 3653   class class class wbr 4039    Or wor 4329   dom cdm 4705   ran crn 4706
This theorem is referenced by:  sofld  5137  soex  5138
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-po 4330  df-so 4331  df-cnv 4713  df-dm 4715  df-rn 4716
  Copyright terms: Public domain W3C validator