Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotri Structured version   Unicode version

Theorem sotri 5261
 Description: A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1
soi.2
Assertion
Ref Expression
sotri

Proof of Theorem sotri
StepHypRef Expression
1 soi.2 . . . . 5
21brel 4926 . . . 4
32simpld 446 . . 3
41brel 4926 . . 3
53, 4anim12i 550 . 2
6 soi.1 . . . 4
7 sotr 4525 . . . 4
86, 7mpan 652 . . 3
983expb 1154 . 2
105, 9mpcom 34 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   w3a 936   wcel 1725   wss 3320   class class class wbr 4212   wor 4502   cxp 4876 This theorem is referenced by:  son2lpi  5262  sotri2  5263  sotri3  5264  son2lpiOLD  5267  ltsonq  8846  ltbtwnnq  8855  nqpr  8891  prlem934  8910  ltexprlem4  8916  reclem2pr  8925  reclem4pr  8927  ltsosr  8969  addgt0sr  8979  supsrlem  8986  axpre-lttrn  9041 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-po 4503  df-so 4504  df-xp 4884
 Copyright terms: Public domain W3C validator