Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcdv Structured version   Unicode version

Theorem spcdv 3034
 Description: Rule of specialization, using implicit substitution. Analogous to rspcdv 3055. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
spcimdv.1
spcdv.2
Assertion
Ref Expression
spcdv
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem spcdv
StepHypRef Expression
1 spcimdv.1 . 2
2 spcdv.2 . . 3
32biimpd 199 . 2
41, 3spcimdv 3033 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wal 1549   wceq 1652   wcel 1725 This theorem is referenced by:  mrissmrcd  13865 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958
 Copyright terms: Public domain W3C validator