Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcgft Structured version   Unicode version

Theorem spcgft 3020
 Description: A closed version of spcgf 3023. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgft.1
spcimgft.2
Assertion
Ref Expression
spcgft

Proof of Theorem spcgft
StepHypRef Expression
1 bi1 179 . . . 4
21imim2i 14 . . 3
32alimi 1568 . 2
4 spcimgft.1 . . 3
5 spcimgft.2 . . 3
64, 5spcimgft 3019 . 2
73, 6syl 16 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1549  wnf 1553   wceq 1652   wcel 1725  wnfc 2558 This theorem is referenced by:  spcgf  3023  rspct  3037 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950
 Copyright terms: Public domain W3C validator