Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcgv Structured version   Unicode version

Theorem spcgv 3038
 Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.)
Hypothesis
Ref Expression
spcgv.1
Assertion
Ref Expression
spcgv
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem spcgv
StepHypRef Expression
1 nfcv 2574 . 2
2 nfv 1630 . 2
3 spcgv.1 . 2
41, 2, 3spcgf 3033 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178  wal 1550   wceq 1653   wcel 1726 This theorem is referenced by:  spcv  3044  mob2  3116  intss1  4067  dfiin2g  4126  fri  4547  alxfr  4739  tfisi  4841  limomss  4853  nnlim  4861  isofrlem  6063  f1oweALT  6077  pssnn  7330  findcard3  7353  ttukeylem1  8394  rami  13388  ramcl  13402  clatlem  14544  islbs3  16232  mplsubglem  16503  mpllsslem  16504  uniopn  16975  chlimi  22742  relexpind  25145  dfon2lem3  25417  dfon2lem8  25422  neificl  26473  ismrcd1  26766 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960
 Copyright terms: Public domain W3C validator