Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcimdv Structured version   Unicode version

Theorem spcimdv 3025
 Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimdv.1
spcimdv.2
Assertion
Ref Expression
spcimdv
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem spcimdv
StepHypRef Expression
1 spcimdv.2 . . . 4
21ex 424 . . 3
32alrimiv 1641 . 2
4 spcimdv.1 . 2
5 nfv 1629 . . 3
6 nfcv 2571 . . 3
75, 6spcimgft 3019 . 2
83, 4, 7sylc 58 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359  wal 1549   wceq 1652   wcel 1725 This theorem is referenced by:  spcdv  3026  spcimedv  3027  rspcimdv  3045  mrieqv2d  13854  mreexexlemd  13859 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950
 Copyright terms: Public domain W3C validator