Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcimgft Structured version   Unicode version

Theorem spcimgft 3029
 Description: A closed version of spcimgf 3031. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgft.1
spcimgft.2
Assertion
Ref Expression
spcimgft

Proof of Theorem spcimgft
StepHypRef Expression
1 elex 2966 . 2
2 spcimgft.2 . . . . 5
32issetf 2963 . . . 4
4 exim 1585 . . . 4
53, 4syl5bi 210 . . 3
6 spcimgft.1 . . . 4
7619.36 1893 . . 3
85, 7syl6ib 219 . 2
91, 8syl5 31 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1550  wex 1551  wnf 1554   wceq 1653   wcel 1726  wnfc 2561  cvv 2958 This theorem is referenced by:  spcgft  3030  spcimgf  3031  spcimdv  3035 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960
 Copyright terms: Public domain W3C validator