HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  specval Structured version   Unicode version

Theorem specval 23401
Description: The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
specval  |-  ( T : ~H --> ~H  ->  (
Lambda `  T )  =  { x  e.  CC  |  -.  ( T  -op  ( x  .op  (  _I  |`  ~H ) ) ) : ~H -1-1-> ~H }
)
Distinct variable group:    x, T

Proof of Theorem specval
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 cnex 9071 . . 3  |-  CC  e.  _V
21rabex 4354 . 2  |-  { x  e.  CC  |  -.  ( T  -op  ( x  .op  (  _I  |`  ~H )
) ) : ~H -1-1-> ~H }  e.  _V
3 ax-hilex 22502 . 2  |-  ~H  e.  _V
4 oveq1 6088 . . . . 5  |-  ( t  =  T  ->  (
t  -op  ( x  .op  (  _I  |`  ~H )
) )  =  ( T  -op  ( x 
.op  (  _I  |`  ~H )
) ) )
5 f1eq1 5634 . . . . 5  |-  ( ( t  -op  ( x 
.op  (  _I  |`  ~H )
) )  =  ( T  -op  ( x 
.op  (  _I  |`  ~H )
) )  ->  (
( t  -op  (
x  .op  (  _I  |` 
~H ) ) ) : ~H -1-1-> ~H  <->  ( T  -op  ( x  .op  (  _I  |`  ~H ) ) ) : ~H -1-1-> ~H ) )
64, 5syl 16 . . . 4  |-  ( t  =  T  ->  (
( t  -op  (
x  .op  (  _I  |` 
~H ) ) ) : ~H -1-1-> ~H  <->  ( T  -op  ( x  .op  (  _I  |`  ~H ) ) ) : ~H -1-1-> ~H ) )
76notbid 286 . . 3  |-  ( t  =  T  ->  ( -.  ( t  -op  (
x  .op  (  _I  |` 
~H ) ) ) : ~H -1-1-> ~H  <->  -.  ( T  -op  ( x  .op  (  _I  |`  ~H )
) ) : ~H -1-1-> ~H ) )
87rabbidv 2948 . 2  |-  ( t  =  T  ->  { x  e.  CC  |  -.  (
t  -op  ( x  .op  (  _I  |`  ~H )
) ) : ~H -1-1-> ~H }  =  { x  e.  CC  |  -.  ( T  -op  ( x  .op  (  _I  |`  ~H )
) ) : ~H -1-1-> ~H } )
9 df-spec 23358 . 2  |-  Lambda  =  ( t  e.  ( ~H 
^m  ~H )  |->  { x  e.  CC  |  -.  (
t  -op  ( x  .op  (  _I  |`  ~H )
) ) : ~H -1-1-> ~H } )
102, 3, 3, 8, 9fvmptmap 7050 1  |-  ( T : ~H --> ~H  ->  (
Lambda `  T )  =  { x  e.  CC  |  -.  ( T  -op  ( x  .op  (  _I  |`  ~H ) ) ) : ~H -1-1-> ~H }
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    = wceq 1652   {crab 2709    _I cid 4493    |` cres 4880   -->wf 5450   -1-1->wf1 5451   ` cfv 5454  (class class class)co 6081   CCcc 8988   ~Hchil 22422    .op chot 22442    -op chod 22443   Lambdacspc 22464
This theorem is referenced by:  speccl  23402
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-hilex 22502
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-map 7020  df-spec 23358
  Copyright terms: Public domain W3C validator