Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spfw Structured version   Unicode version

Theorem spfw 1704
 Description: Weak version of sp 1764. Uses only Tarski's FOL axiom schemes. Lemma 9 of [KalishMontague] p. 87. This may be the best we can do with minimal distinct variable conditions. TO DO: Do we need this theorem? If not, maybe it should be deleted. (Contributed by NM, 19-Apr-2017.)
Hypotheses
Ref Expression
spfw.1
spfw.2
spfw.3
spfw.4
Assertion
Ref Expression
spfw
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem spfw
StepHypRef Expression
1 spfw.2 . . 3
2 ax-5 1567 . . 3
3 spfw.3 . . . 4
4 spfw.4 . . . . . 6
54biimprd 216 . . . . 5
65equcoms 1694 . . . 4
73, 6spimw 1681 . . 3
81, 2, 7syl56 33 . 2
9 spfw.1 . . 3
104biimpd 200 . . 3
119, 10spimw 1681 . 2
128, 11mpg 1558 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 178  wal 1550 This theorem is referenced by:  spnfwOLD  1705  spw  1707 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552
 Copyright terms: Public domain W3C validator