Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spime Unicode version

Theorem spime 1929
 Description: Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 3-Oct-2016.)
Hypotheses
Ref Expression
spime.1
spime.2
Assertion
Ref Expression
spime

Proof of Theorem spime
StepHypRef Expression
1 spime.1 . . . . 5
21nfn 1777 . . . 4
3 spime.2 . . . . 5
43con3d 125 . . . 4
52, 4spim 1928 . . 3
65con2i 112 . 2
7 df-ex 1532 . 2
86, 7sylibr 203 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1530  wex 1531  wnf 1534 This theorem is referenced by:  spimed  1930  spimev  1952  exnel  24230 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535
 Copyright terms: Public domain W3C validator