Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimt Structured version   Unicode version

Theorem spimt 1955
 Description: Closed theorem form of spim 1957. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Feb-2018.)
Assertion
Ref Expression
spimt

Proof of Theorem spimt
StepHypRef Expression
1 a9e 1952 . . . 4
2 exim 1584 . . . 4
31, 2mpi 17 . . 3
4 19.35 1610 . . 3
53, 4sylib 189 . 2
6 19.9t 1793 . . 3
76biimpd 199 . 2
85, 7sylan9r 640 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359  wal 1549  wex 1550  wnf 1553 This theorem is referenced by:  spimOLD  1958  equveliOLD  2086 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-nf 1554
 Copyright terms: Public domain W3C validator