MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimvw Unicode version

Theorem spimvw 1677
Description: Specialization. Lemma 8 of [KalishMontague] p. 87. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.)
Hypothesis
Ref Expression
spimvw.1  |-  ( x  =  y  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
spimvw  |-  ( A. x ph  ->  ps )
Distinct variable groups:    x, y    ps, x
Allowed substitution hints:    ph( x, y)    ps( y)

Proof of Theorem spimvw
StepHypRef Expression
1 ax-17 1623 . 2  |-  ( -. 
ps  ->  A. x  -.  ps )
2 spimvw.1 . 2  |-  ( x  =  y  ->  ( ph  ->  ps ) )
31, 2spimw 1676 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1546
This theorem is referenced by:  cbvalivw  1682  spwOLD  1703  alcomiw  1714  ax12olem1  1972
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1548
  Copyright terms: Public domain W3C validator