MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  splcl Unicode version

Theorem splcl 11467
Description: Closure of the substring replacement operator. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Assertion
Ref Expression
splcl  |-  ( ( S  e. Word  A  /\  R  e. Word  A )  ->  ( S splice  <. F ,  T ,  R >. )  e. Word  A )

Proof of Theorem splcl
Dummy variables  s 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2796 . . . 4  |-  ( S  e. Word  A  ->  S  e.  _V )
2 otex 4238 . . . 4  |-  <. F ,  T ,  R >.  e. 
_V
3 id 19 . . . . . . . 8  |-  ( s  =  S  ->  s  =  S )
4 fveq2 5525 . . . . . . . . . 10  |-  ( b  =  <. F ,  T ,  R >.  ->  ( 1st `  b )  =  ( 1st `  <. F ,  T ,  R >. ) )
54fveq2d 5529 . . . . . . . . 9  |-  ( b  =  <. F ,  T ,  R >.  ->  ( 1st `  ( 1st `  b
) )  =  ( 1st `  ( 1st `  <. F ,  T ,  R >. ) ) )
65opeq2d 3803 . . . . . . . 8  |-  ( b  =  <. F ,  T ,  R >.  ->  <. 0 ,  ( 1st `  ( 1st `  b ) )
>.  =  <. 0 ,  ( 1st `  ( 1st `  <. F ,  T ,  R >. ) ) >.
)
73, 6oveqan12d 5877 . . . . . . 7  |-  ( ( s  =  S  /\  b  =  <. F ,  T ,  R >. )  ->  ( s substr  <. 0 ,  ( 1st `  ( 1st `  b
) ) >. )  =  ( S substr  <. 0 ,  ( 1st `  ( 1st `  <. F ,  T ,  R >. ) ) >.
) )
8 simpr 447 . . . . . . . 8  |-  ( ( s  =  S  /\  b  =  <. F ,  T ,  R >. )  ->  b  =  <. F ,  T ,  R >. )
98fveq2d 5529 . . . . . . 7  |-  ( ( s  =  S  /\  b  =  <. F ,  T ,  R >. )  ->  ( 2nd `  b
)  =  ( 2nd `  <. F ,  T ,  R >. ) )
107, 9oveq12d 5876 . . . . . 6  |-  ( ( s  =  S  /\  b  =  <. F ,  T ,  R >. )  ->  ( ( s substr  <. 0 ,  ( 1st `  ( 1st `  b
) ) >. ) concat  ( 2nd `  b ) )  =  ( ( S substr  <. 0 ,  ( 1st `  ( 1st `  <. F ,  T ,  R >. ) ) >.
) concat  ( 2nd `  <. F ,  T ,  R >. ) ) )
11 simpl 443 . . . . . . 7  |-  ( ( s  =  S  /\  b  =  <. F ,  T ,  R >. )  ->  s  =  S )
128fveq2d 5529 . . . . . . . . 9  |-  ( ( s  =  S  /\  b  =  <. F ,  T ,  R >. )  ->  ( 1st `  b
)  =  ( 1st `  <. F ,  T ,  R >. ) )
1312fveq2d 5529 . . . . . . . 8  |-  ( ( s  =  S  /\  b  =  <. F ,  T ,  R >. )  ->  ( 2nd `  ( 1st `  b ) )  =  ( 2nd `  ( 1st `  <. F ,  T ,  R >. ) ) )
1411fveq2d 5529 . . . . . . . 8  |-  ( ( s  =  S  /\  b  =  <. F ,  T ,  R >. )  ->  ( # `  s
)  =  ( # `  S ) )
1513, 14opeq12d 3804 . . . . . . 7  |-  ( ( s  =  S  /\  b  =  <. F ,  T ,  R >. )  ->  <. ( 2nd `  ( 1st `  b ) ) ,  ( # `  s
) >.  =  <. ( 2nd `  ( 1st `  <. F ,  T ,  R >. ) ) ,  (
# `  S ) >. )
1611, 15oveq12d 5876 . . . . . 6  |-  ( ( s  =  S  /\  b  =  <. F ,  T ,  R >. )  ->  ( s substr  <. ( 2nd `  ( 1st `  b ) ) ,  ( # `  s
) >. )  =  ( S substr  <. ( 2nd `  ( 1st `  <. F ,  T ,  R >. ) ) ,  ( # `  S
) >. ) )
1710, 16oveq12d 5876 . . . . 5  |-  ( ( s  =  S  /\  b  =  <. F ,  T ,  R >. )  ->  ( ( ( s substr  <. 0 ,  ( 1st `  ( 1st `  b ) ) >.
) concat  ( 2nd `  b
) ) concat  ( s substr  <.
( 2nd `  ( 1st `  b ) ) ,  ( # `  s
) >. ) )  =  ( ( ( S substr  <. 0 ,  ( 1st `  ( 1st `  <. F ,  T ,  R >. ) ) >. ) concat  ( 2nd `  <. F ,  T ,  R >. ) ) concat  ( S substr  <. ( 2nd `  ( 1st `  <. F ,  T ,  R >. ) ) ,  (
# `  S ) >. ) ) )
18 df-splice 11413 . . . . 5  |- splice  =  ( s  e.  _V , 
b  e.  _V  |->  ( ( ( s substr  <. 0 ,  ( 1st `  ( 1st `  b
) ) >. ) concat  ( 2nd `  b ) ) concat  ( s substr  <. ( 2nd `  ( 1st `  b ) ) ,  ( # `  s
) >. ) ) )
19 ovex 5883 . . . . 5  |-  ( ( ( S substr  <. 0 ,  ( 1st `  ( 1st `  <. F ,  T ,  R >. ) ) >.
) concat  ( 2nd `  <. F ,  T ,  R >. ) ) concat  ( S substr  <. ( 2nd `  ( 1st `  <. F ,  T ,  R >. ) ) ,  ( # `  S
) >. ) )  e. 
_V
2017, 18, 19ovmpt2a 5978 . . . 4  |-  ( ( S  e.  _V  /\  <. F ,  T ,  R >.  e.  _V )  ->  ( S splice  <. F ,  T ,  R >. )  =  ( ( ( S substr  <. 0 ,  ( 1st `  ( 1st `  <. F ,  T ,  R >. ) ) >.
) concat  ( 2nd `  <. F ,  T ,  R >. ) ) concat  ( S substr  <. ( 2nd `  ( 1st `  <. F ,  T ,  R >. ) ) ,  ( # `  S
) >. ) ) )
211, 2, 20sylancl 643 . . 3  |-  ( S  e. Word  A  ->  ( S splice  <. F ,  T ,  R >. )  =  ( ( ( S substr  <. 0 ,  ( 1st `  ( 1st `  <. F ,  T ,  R >. ) ) >.
) concat  ( 2nd `  <. F ,  T ,  R >. ) ) concat  ( S substr  <. ( 2nd `  ( 1st `  <. F ,  T ,  R >. ) ) ,  ( # `  S
) >. ) ) )
2221adantr 451 . 2  |-  ( ( S  e. Word  A  /\  R  e. Word  A )  ->  ( S splice  <. F ,  T ,  R >. )  =  ( ( ( S substr  <. 0 ,  ( 1st `  ( 1st `  <. F ,  T ,  R >. ) ) >.
) concat  ( 2nd `  <. F ,  T ,  R >. ) ) concat  ( S substr  <. ( 2nd `  ( 1st `  <. F ,  T ,  R >. ) ) ,  ( # `  S
) >. ) ) )
23 swrdcl 11452 . . . . 5  |-  ( S  e. Word  A  ->  ( S substr  <. 0 ,  ( 1st `  ( 1st `  <. F ,  T ,  R >. ) ) >.
)  e. Word  A )
2423adantr 451 . . . 4  |-  ( ( S  e. Word  A  /\  R  e. Word  A )  ->  ( S substr  <. 0 ,  ( 1st `  ( 1st `  <. F ,  T ,  R >. ) ) >.
)  e. Word  A )
25 ot3rdg 6136 . . . . . 6  |-  ( R  e. Word  A  ->  ( 2nd `  <. F ,  T ,  R >. )  =  R )
2625adantl 452 . . . . 5  |-  ( ( S  e. Word  A  /\  R  e. Word  A )  ->  ( 2nd `  <. F ,  T ,  R >. )  =  R )
27 simpr 447 . . . . 5  |-  ( ( S  e. Word  A  /\  R  e. Word  A )  ->  R  e. Word  A )
2826, 27eqeltrd 2357 . . . 4  |-  ( ( S  e. Word  A  /\  R  e. Word  A )  ->  ( 2nd `  <. F ,  T ,  R >. )  e. Word  A )
29 ccatcl 11429 . . . 4  |-  ( ( ( S substr  <. 0 ,  ( 1st `  ( 1st `  <. F ,  T ,  R >. ) ) >.
)  e. Word  A  /\  ( 2nd `  <. F ,  T ,  R >. )  e. Word  A )  -> 
( ( S substr  <. 0 ,  ( 1st `  ( 1st `  <. F ,  T ,  R >. ) ) >.
) concat  ( 2nd `  <. F ,  T ,  R >. ) )  e. Word  A
)
3024, 28, 29syl2anc 642 . . 3  |-  ( ( S  e. Word  A  /\  R  e. Word  A )  ->  ( ( S substr  <. 0 ,  ( 1st `  ( 1st `  <. F ,  T ,  R >. ) ) >.
) concat  ( 2nd `  <. F ,  T ,  R >. ) )  e. Word  A
)
31 swrdcl 11452 . . . 4  |-  ( S  e. Word  A  ->  ( S substr  <. ( 2nd `  ( 1st `  <. F ,  T ,  R >. ) ) ,  ( # `  S
) >. )  e. Word  A
)
3231adantr 451 . . 3  |-  ( ( S  e. Word  A  /\  R  e. Word  A )  ->  ( S substr  <. ( 2nd `  ( 1st `  <. F ,  T ,  R >. ) ) ,  (
# `  S ) >. )  e. Word  A )
33 ccatcl 11429 . . 3  |-  ( ( ( ( S substr  <. 0 ,  ( 1st `  ( 1st `  <. F ,  T ,  R >. ) ) >.
) concat  ( 2nd `  <. F ,  T ,  R >. ) )  e. Word  A  /\  ( S substr  <. ( 2nd `  ( 1st `  <. F ,  T ,  R >. ) ) ,  (
# `  S ) >. )  e. Word  A )  ->  ( ( ( S substr  <. 0 ,  ( 1st `  ( 1st `  <. F ,  T ,  R >. ) ) >.
) concat  ( 2nd `  <. F ,  T ,  R >. ) ) concat  ( S substr  <. ( 2nd `  ( 1st `  <. F ,  T ,  R >. ) ) ,  ( # `  S
) >. ) )  e. Word  A )
3430, 32, 33syl2anc 642 . 2  |-  ( ( S  e. Word  A  /\  R  e. Word  A )  ->  ( ( ( S substr  <. 0 ,  ( 1st `  ( 1st `  <. F ,  T ,  R >. ) ) >. ) concat  ( 2nd `  <. F ,  T ,  R >. ) ) concat  ( S substr  <. ( 2nd `  ( 1st `  <. F ,  T ,  R >. ) ) ,  (
# `  S ) >. ) )  e. Word  A
)
3522, 34eqeltrd 2357 1  |-  ( ( S  e. Word  A  /\  R  e. Word  A )  ->  ( S splice  <. F ,  T ,  R >. )  e. Word  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   <.cop 3643   <.cotp 3644   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121   0cc0 8737   #chash 11337  Word cword 11403   concat cconcat 11404   substr csubstr 11406   splice csplice 11407
This theorem is referenced by:  efglem  15025  efgtf  15031  frgpuplem  15081  psgnunilem2  27418
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-ot 3650  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-hash 11338  df-word 11409  df-concat 11410  df-substr 11412  df-splice 11413
  Copyright terms: Public domain W3C validator