MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spllen Unicode version

Theorem spllen 11485
Description: The length of a splice. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Hypotheses
Ref Expression
spllen.s  |-  ( ph  ->  S  e. Word  A )
spllen.f  |-  ( ph  ->  F  e.  ( 0 ... T ) )
spllen.t  |-  ( ph  ->  T  e.  ( 0 ... ( # `  S
) ) )
spllen.r  |-  ( ph  ->  R  e. Word  A )
Assertion
Ref Expression
spllen  |-  ( ph  ->  ( # `  ( S splice  <. F ,  T ,  R >. ) )  =  ( ( # `  S
)  +  ( (
# `  R )  -  ( T  -  F ) ) ) )

Proof of Theorem spllen
StepHypRef Expression
1 spllen.s . . . 4  |-  ( ph  ->  S  e. Word  A )
2 spllen.f . . . 4  |-  ( ph  ->  F  e.  ( 0 ... T ) )
3 spllen.t . . . 4  |-  ( ph  ->  T  e.  ( 0 ... ( # `  S
) ) )
4 spllen.r . . . 4  |-  ( ph  ->  R  e. Word  A )
5 splval 11482 . . . 4  |-  ( ( S  e. Word  A  /\  ( F  e.  (
0 ... T )  /\  T  e.  ( 0 ... ( # `  S
) )  /\  R  e. Word  A ) )  -> 
( S splice  <. F ,  T ,  R >. )  =  ( ( ( S substr  <. 0 ,  F >. ) concat  R ) concat  ( S substr  <. T ,  (
# `  S ) >. ) ) )
61, 2, 3, 4, 5syl13anc 1184 . . 3  |-  ( ph  ->  ( S splice  <. F ,  T ,  R >. )  =  ( ( ( S substr  <. 0 ,  F >. ) concat  R ) concat  ( S substr  <. T ,  (
# `  S ) >. ) ) )
76fveq2d 5545 . 2  |-  ( ph  ->  ( # `  ( S splice  <. F ,  T ,  R >. ) )  =  ( # `  (
( ( S substr  <. 0 ,  F >. ) concat  R ) concat  ( S substr  <. T ,  (
# `  S ) >. ) ) ) )
8 swrdcl 11468 . . . . 5  |-  ( S  e. Word  A  ->  ( S substr  <. 0 ,  F >. )  e. Word  A )
91, 8syl 15 . . . 4  |-  ( ph  ->  ( S substr  <. 0 ,  F >. )  e. Word  A
)
10 ccatcl 11445 . . . 4  |-  ( ( ( S substr  <. 0 ,  F >. )  e. Word  A  /\  R  e. Word  A )  ->  ( ( S substr  <. 0 ,  F >. ) concat  R )  e. Word  A
)
119, 4, 10syl2anc 642 . . 3  |-  ( ph  ->  ( ( S substr  <. 0 ,  F >. ) concat  R )  e. Word  A )
12 swrdcl 11468 . . . 4  |-  ( S  e. Word  A  ->  ( S substr  <. T ,  (
# `  S ) >. )  e. Word  A )
131, 12syl 15 . . 3  |-  ( ph  ->  ( S substr  <. T , 
( # `  S )
>. )  e. Word  A )
14 ccatlen 11446 . . 3  |-  ( ( ( ( S substr  <. 0 ,  F >. ) concat  R )  e. Word  A  /\  ( S substr  <. T ,  ( # `  S ) >. )  e. Word  A )  ->  ( # `
 ( ( ( S substr  <. 0 ,  F >. ) concat  R ) concat  ( S substr  <. T ,  (
# `  S ) >. ) ) )  =  ( ( # `  (
( S substr  <. 0 ,  F >. ) concat  R )
)  +  ( # `  ( S substr  <. T , 
( # `  S )
>. ) ) ) )
1511, 13, 14syl2anc 642 . 2  |-  ( ph  ->  ( # `  (
( ( S substr  <. 0 ,  F >. ) concat  R ) concat  ( S substr  <. T ,  (
# `  S ) >. ) ) )  =  ( ( # `  (
( S substr  <. 0 ,  F >. ) concat  R )
)  +  ( # `  ( S substr  <. T , 
( # `  S )
>. ) ) ) )
16 lencl 11437 . . . . . . 7  |-  ( R  e. Word  A  ->  ( # `
 R )  e. 
NN0 )
174, 16syl 15 . . . . . 6  |-  ( ph  ->  ( # `  R
)  e.  NN0 )
1817nn0cnd 10036 . . . . 5  |-  ( ph  ->  ( # `  R
)  e.  CC )
19 elfzelz 10814 . . . . . . 7  |-  ( F  e.  ( 0 ... T )  ->  F  e.  ZZ )
202, 19syl 15 . . . . . 6  |-  ( ph  ->  F  e.  ZZ )
2120zcnd 10134 . . . . 5  |-  ( ph  ->  F  e.  CC )
2218, 21addcld 8870 . . . 4  |-  ( ph  ->  ( ( # `  R
)  +  F )  e.  CC )
23 elfzel2 10812 . . . . . 6  |-  ( T  e.  ( 0 ... ( # `  S
) )  ->  ( # `
 S )  e.  ZZ )
243, 23syl 15 . . . . 5  |-  ( ph  ->  ( # `  S
)  e.  ZZ )
2524zcnd 10134 . . . 4  |-  ( ph  ->  ( # `  S
)  e.  CC )
26 elfzelz 10814 . . . . . 6  |-  ( T  e.  ( 0 ... ( # `  S
) )  ->  T  e.  ZZ )
273, 26syl 15 . . . . 5  |-  ( ph  ->  T  e.  ZZ )
2827zcnd 10134 . . . 4  |-  ( ph  ->  T  e.  CC )
2922, 25, 28addsub12d 9196 . . 3  |-  ( ph  ->  ( ( ( # `  R )  +  F
)  +  ( (
# `  S )  -  T ) )  =  ( ( # `  S
)  +  ( ( ( # `  R
)  +  F )  -  T ) ) )
30 ccatlen 11446 . . . . . 6  |-  ( ( ( S substr  <. 0 ,  F >. )  e. Word  A  /\  R  e. Word  A )  ->  ( # `  (
( S substr  <. 0 ,  F >. ) concat  R )
)  =  ( (
# `  ( S substr  <.
0 ,  F >. ) )  +  ( # `  R ) ) )
319, 4, 30syl2anc 642 . . . . 5  |-  ( ph  ->  ( # `  (
( S substr  <. 0 ,  F >. ) concat  R )
)  =  ( (
# `  ( S substr  <.
0 ,  F >. ) )  +  ( # `  R ) ) )
32 elfzuz 10810 . . . . . . . . . 10  |-  ( F  e.  ( 0 ... T )  ->  F  e.  ( ZZ>= `  0 )
)
332, 32syl 15 . . . . . . . . 9  |-  ( ph  ->  F  e.  ( ZZ>= ` 
0 ) )
34 eluzfz1 10819 . . . . . . . . 9  |-  ( F  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... F
) )
3533, 34syl 15 . . . . . . . 8  |-  ( ph  ->  0  e.  ( 0 ... F ) )
36 elfzuz3 10811 . . . . . . . . . . 11  |-  ( T  e.  ( 0 ... ( # `  S
) )  ->  ( # `
 S )  e.  ( ZZ>= `  T )
)
373, 36syl 15 . . . . . . . . . 10  |-  ( ph  ->  ( # `  S
)  e.  ( ZZ>= `  T ) )
38 elfzuz3 10811 . . . . . . . . . . 11  |-  ( F  e.  ( 0 ... T )  ->  T  e.  ( ZZ>= `  F )
)
392, 38syl 15 . . . . . . . . . 10  |-  ( ph  ->  T  e.  ( ZZ>= `  F ) )
40 uztrn 10260 . . . . . . . . . 10  |-  ( ( ( # `  S
)  e.  ( ZZ>= `  T )  /\  T  e.  ( ZZ>= `  F )
)  ->  ( # `  S
)  e.  ( ZZ>= `  F ) )
4137, 39, 40syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( # `  S
)  e.  ( ZZ>= `  F ) )
42 elfzuzb 10808 . . . . . . . . 9  |-  ( F  e.  ( 0 ... ( # `  S
) )  <->  ( F  e.  ( ZZ>= `  0 )  /\  ( # `  S
)  e.  ( ZZ>= `  F ) ) )
4333, 41, 42sylanbrc 645 . . . . . . . 8  |-  ( ph  ->  F  e.  ( 0 ... ( # `  S
) ) )
44 swrdlen 11472 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  0  e.  ( 0 ... F )  /\  F  e.  ( 0 ... ( # `  S
) ) )  -> 
( # `  ( S substr  <. 0 ,  F >. ) )  =  ( F  -  0 ) )
451, 35, 43, 44syl3anc 1182 . . . . . . 7  |-  ( ph  ->  ( # `  ( S substr  <. 0 ,  F >. ) )  =  ( F  -  0 ) )
4621subid1d 9162 . . . . . . 7  |-  ( ph  ->  ( F  -  0 )  =  F )
4745, 46eqtrd 2328 . . . . . 6  |-  ( ph  ->  ( # `  ( S substr  <. 0 ,  F >. ) )  =  F )
4847oveq1d 5889 . . . . 5  |-  ( ph  ->  ( ( # `  ( S substr  <. 0 ,  F >. ) )  +  (
# `  R )
)  =  ( F  +  ( # `  R
) ) )
4921, 18addcomd 9030 . . . . 5  |-  ( ph  ->  ( F  +  (
# `  R )
)  =  ( (
# `  R )  +  F ) )
5031, 48, 493eqtrd 2332 . . . 4  |-  ( ph  ->  ( # `  (
( S substr  <. 0 ,  F >. ) concat  R )
)  =  ( (
# `  R )  +  F ) )
51 elfzuz2 10817 . . . . . . 7  |-  ( T  e.  ( 0 ... ( # `  S
) )  ->  ( # `
 S )  e.  ( ZZ>= `  0 )
)
523, 51syl 15 . . . . . 6  |-  ( ph  ->  ( # `  S
)  e.  ( ZZ>= ` 
0 ) )
53 eluzfz2 10820 . . . . . 6  |-  ( (
# `  S )  e.  ( ZZ>= `  0 )  ->  ( # `  S
)  e.  ( 0 ... ( # `  S
) ) )
5452, 53syl 15 . . . . 5  |-  ( ph  ->  ( # `  S
)  e.  ( 0 ... ( # `  S
) ) )
55 swrdlen 11472 . . . . 5  |-  ( ( S  e. Word  A  /\  T  e.  ( 0 ... ( # `  S
) )  /\  ( # `
 S )  e.  ( 0 ... ( # `
 S ) ) )  ->  ( # `  ( S substr  <. T ,  (
# `  S ) >. ) )  =  ( ( # `  S
)  -  T ) )
561, 3, 54, 55syl3anc 1182 . . . 4  |-  ( ph  ->  ( # `  ( S substr  <. T ,  (
# `  S ) >. ) )  =  ( ( # `  S
)  -  T ) )
5750, 56oveq12d 5892 . . 3  |-  ( ph  ->  ( ( # `  (
( S substr  <. 0 ,  F >. ) concat  R )
)  +  ( # `  ( S substr  <. T , 
( # `  S )
>. ) ) )  =  ( ( ( # `  R )  +  F
)  +  ( (
# `  S )  -  T ) ) )
5818, 28, 21subsub3d 9203 . . . 4  |-  ( ph  ->  ( ( # `  R
)  -  ( T  -  F ) )  =  ( ( (
# `  R )  +  F )  -  T
) )
5958oveq2d 5890 . . 3  |-  ( ph  ->  ( ( # `  S
)  +  ( (
# `  R )  -  ( T  -  F ) ) )  =  ( ( # `  S )  +  ( ( ( # `  R
)  +  F )  -  T ) ) )
6029, 57, 593eqtr4d 2338 . 2  |-  ( ph  ->  ( ( # `  (
( S substr  <. 0 ,  F >. ) concat  R )
)  +  ( # `  ( S substr  <. T , 
( # `  S )
>. ) ) )  =  ( ( # `  S
)  +  ( (
# `  R )  -  ( T  -  F ) ) ) )
617, 15, 603eqtrd 2332 1  |-  ( ph  ->  ( # `  ( S splice  <. F ,  T ,  R >. ) )  =  ( ( # `  S
)  +  ( (
# `  R )  -  ( T  -  F ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   <.cop 3656   <.cotp 3657   ` cfv 5271  (class class class)co 5874   0cc0 8753    + caddc 8756    - cmin 9053   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   ...cfz 10798   #chash 11353  Word cword 11419   concat cconcat 11420   substr csubstr 11422   splice csplice 11423
This theorem is referenced by:  efgtlen  15051  psgnunilem2  27521
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-ot 3663  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-fzo 10887  df-hash 11354  df-word 11425  df-concat 11426  df-substr 11428  df-splice 11429
  Copyright terms: Public domain W3C validator