MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sps-o Structured version   Unicode version

Theorem sps-o 2235
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sps-o.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
sps-o  |-  ( A. x ph  ->  ps )

Proof of Theorem sps-o
StepHypRef Expression
1 ax-4 2211 . 2  |-  ( A. x ph  ->  ph )
2 sps-o.1 . 2  |-  ( ph  ->  ps )
31, 2syl 16 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1549
This theorem is referenced by:  ax467to6  2247  ax10-16  2266  ax11eq  2269  ax11el  2270  ax11inda  2276  ax11v2-o  2277  ax10o-o  2279
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 8  ax-4 2211
  Copyright terms: Public domain W3C validator