MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsbbi Unicode version

Theorem spsbbi 2017
Description: Specialization of biconditional. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
spsbbi  |-  ( A. x ( ph  <->  ps )  ->  ( [ y  /  x ] ph  <->  [ y  /  x ] ps )
)

Proof of Theorem spsbbi
StepHypRef Expression
1 stdpc4 1964 . 2  |-  ( A. x ( ph  <->  ps )  ->  [ y  /  x ] ( ph  <->  ps )
)
2 sbbi 2011 . 2  |-  ( [ y  /  x ]
( ph  <->  ps )  <->  ( [
y  /  x ] ph 
<->  [ y  /  x ] ps ) )
31, 2sylib 188 1  |-  ( A. x ( ph  <->  ps )  ->  ( [ y  /  x ] ph  <->  [ y  /  x ] ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527   [wsb 1629
This theorem is referenced by:  sbbid  2018  sbco3  2028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630
  Copyright terms: Public domain W3C validator