Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spsbce-2 Unicode version

Theorem spsbce-2 27682
Description: Theorem *11.36 in [WhiteheadRussell] p. 162. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
spsbce-2  |-  ( [ z  /  x ] [ w  /  y ] ph  ->  E. x E. y ph )

Proof of Theorem spsbce-2
StepHypRef Expression
1 spsbe 2028 . 2  |-  ( [ z  /  x ] [ w  /  y ] ph  ->  E. x [ w  /  y ] ph )
2 spsbe 2028 . . 3  |-  ( [ w  /  y ]
ph  ->  E. y ph )
32eximi 1566 . 2  |-  ( E. x [ w  / 
y ] ph  ->  E. x E. y ph )
41, 3syl 15 1  |-  ( [ z  /  x ] [ w  /  y ] ph  ->  E. x E. y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1531   [wsb 1638
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639
  Copyright terms: Public domain W3C validator