MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsbim Structured version   Unicode version

Theorem spsbim 2136
Description: Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
spsbim  |-  ( A. x ( ph  ->  ps )  ->  ( [
y  /  x ] ph  ->  [ y  /  x ] ps ) )

Proof of Theorem spsbim
StepHypRef Expression
1 stdpc4 2092 . 2  |-  ( A. x ( ph  ->  ps )  ->  [ y  /  x ] ( ph  ->  ps ) )
2 sbi1 2134 . 2  |-  ( [ y  /  x ]
( ph  ->  ps )  ->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps ) )
31, 2syl 16 1  |-  ( A. x ( ph  ->  ps )  ->  ( [
y  /  x ] ph  ->  [ y  /  x ] ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1550   [wsb 1659
This theorem is referenced by:  pm11.59  27569  sbiota1  27613
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660
  Copyright terms: Public domain W3C validator