MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sptruw Structured version   Unicode version

Theorem sptruw 1684
Description: Version of sp 1764 when  ph is true. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 23-Apr-1017.)
Hypothesis
Ref Expression
sptruw.1  |-  ph
Assertion
Ref Expression
sptruw  |-  ( A. x ph  ->  ph )

Proof of Theorem sptruw
StepHypRef Expression
1 sptruw.1 . 2  |-  ph
21a1i 11 1  |-  ( A. x ph  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1550
This theorem was proved from axioms:  ax-mp 5  ax-1 6
  Copyright terms: Public domain W3C validator