MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqgcd Unicode version

Theorem sqgcd 12737
Description: Square distributes over GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
sqgcd  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  =  ( ( M ^ 2 )  gcd  ( N ^ 2 ) ) )

Proof of Theorem sqgcd
StepHypRef Expression
1 nnz 10045 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  ZZ )
2 nnz 10045 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  ZZ )
31, 2anim12i 549 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
4 nnne0 9778 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  =/=  0 )
54neneqd 2462 . . . . . . . 8  |-  ( M  e.  NN  ->  -.  M  =  0 )
65intnanrd 883 . . . . . . 7  |-  ( M  e.  NN  ->  -.  ( M  =  0  /\  N  =  0
) )
76adantr 451 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  -.  ( M  =  0  /\  N  =  0 ) )
8 gcdn0cl 12693 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  e.  NN )
93, 7, 8syl2anc 642 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  NN )
109nnsqcld 11265 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  e.  NN )
1110nncnd 9762 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  e.  CC )
1211mulid1d 8852 . 2  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  gcd  N ) ^
2 )  x.  1 )  =  ( ( M  gcd  N ) ^ 2 ) )
13 nnsqcl 11173 . . . . . . 7  |-  ( M  e.  NN  ->  ( M ^ 2 )  e.  NN )
1413nnzd 10116 . . . . . 6  |-  ( M  e.  NN  ->  ( M ^ 2 )  e.  ZZ )
1514adantr 451 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M ^ 2 )  e.  ZZ )
16 nnsqcl 11173 . . . . . . 7  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  NN )
1716nnzd 10116 . . . . . 6  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  ZZ )
1817adantl 452 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N ^ 2 )  e.  ZZ )
19 gcddvds 12694 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
201, 2, 19syl2an 463 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
2120simpld 445 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  ||  M )
229nnzd 10116 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  ZZ )
231adantr 451 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  ZZ )
24 dvdssqim 12732 . . . . . . 7  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( M ^
2 ) ) )
2522, 23, 24syl2anc 642 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  M  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( M ^
2 ) ) )
2621, 25mpd 14 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 ) 
||  ( M ^
2 ) )
2720simprd 449 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  ||  N )
282adantl 452 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  ZZ )
29 dvdssqim 12732 . . . . . . 7  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  N  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) ) )
3022, 28, 29syl2anc 642 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  N  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) ) )
3127, 30mpd 14 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) )
32 gcddiv 12728 . . . . 5  |-  ( ( ( ( M ^
2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ  /\  ( ( M  gcd  N ) ^ 2 )  e.  NN )  /\  ( ( ( M  gcd  N ) ^
2 )  ||  ( M ^ 2 )  /\  ( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) ) )  ->  ( ( ( M ^ 2 )  gcd  ( N ^
2 ) )  / 
( ( M  gcd  N ) ^ 2 ) )  =  ( ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^ 2 ) )  gcd  ( ( N ^ 2 )  / 
( ( M  gcd  N ) ^ 2 ) ) ) )
3315, 18, 10, 26, 31, 32syl32anc 1190 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M ^ 2 )  gcd  ( N ^ 2 ) )  /  (
( M  gcd  N
) ^ 2 ) )  =  ( ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^ 2 ) )  gcd  ( ( N ^ 2 )  / 
( ( M  gcd  N ) ^ 2 ) ) ) )
34 nncn 9754 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  CC )
3534adantr 451 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  CC )
369nncnd 9762 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  CC )
379nnne0d 9790 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  =/=  0 )
3835, 36, 37sqdivd 11258 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  / 
( M  gcd  N
) ) ^ 2 )  =  ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^
2 ) ) )
39 nncn 9754 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  CC )
4039adantl 452 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  CC )
4140, 36, 37sqdivd 11258 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( N  / 
( M  gcd  N
) ) ^ 2 )  =  ( ( N ^ 2 )  /  ( ( M  gcd  N ) ^
2 ) ) )
4238, 41oveq12d 5876 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  /  ( M  gcd  N ) ) ^ 2 ) )  =  ( ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^
2 ) )  gcd  ( ( N ^
2 )  /  (
( M  gcd  N
) ^ 2 ) ) ) )
43 gcddiv 12728 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( M  gcd  N )  e.  NN )  /\  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )  ->  ( ( M  gcd  N )  / 
( M  gcd  N
) )  =  ( ( M  /  ( M  gcd  N ) )  gcd  ( N  / 
( M  gcd  N
) ) ) )
4423, 28, 9, 20, 43syl31anc 1185 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  /  ( M  gcd  N ) )  =  ( ( M  /  ( M  gcd  N ) )  gcd  ( N  /  ( M  gcd  N ) ) ) )
4536, 37dividd 9534 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  /  ( M  gcd  N ) )  =  1 )
4644, 45eqtr3d 2317 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  / 
( M  gcd  N
) )  gcd  ( N  /  ( M  gcd  N ) ) )  =  1 )
47 dvdsval2 12534 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  ( M  gcd  N )  =/=  0  /\  M  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  <->  ( M  /  ( M  gcd  N ) )  e.  ZZ ) )
4822, 37, 23, 47syl3anc 1182 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  M  <->  ( M  /  ( M  gcd  N ) )  e.  ZZ ) )
4921, 48mpbid 201 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  /  ( M  gcd  N ) )  e.  ZZ )
50 nnre 9753 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  RR )
5150adantr 451 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  RR )
529nnred 9761 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  RR )
53 nngt0 9775 . . . . . . . . 9  |-  ( M  e.  NN  ->  0  <  M )
5453adantr 451 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  M )
559nngt0d 9789 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  ( M  gcd  N ) )
5651, 52, 54, 55divgt0d 9692 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  ( M  /  ( M  gcd  N ) ) )
57 elnnz 10034 . . . . . . 7  |-  ( ( M  /  ( M  gcd  N ) )  e.  NN  <->  ( ( M  /  ( M  gcd  N ) )  e.  ZZ  /\  0  <  ( M  /  ( M  gcd  N ) ) ) )
5849, 56, 57sylanbrc 645 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  /  ( M  gcd  N ) )  e.  NN )
59 dvdsval2 12534 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  ( M  gcd  N )  =/=  0  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  N  <->  ( N  /  ( M  gcd  N ) )  e.  ZZ ) )
6022, 37, 28, 59syl3anc 1182 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  N  <->  ( N  /  ( M  gcd  N ) )  e.  ZZ ) )
6127, 60mpbid 201 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  /  ( M  gcd  N ) )  e.  ZZ )
62 nnre 9753 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  RR )
6362adantl 452 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  RR )
64 nngt0 9775 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <  N )
6564adantl 452 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  N )
6663, 52, 65, 55divgt0d 9692 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  ( N  /  ( M  gcd  N ) ) )
67 elnnz 10034 . . . . . . 7  |-  ( ( N  /  ( M  gcd  N ) )  e.  NN  <->  ( ( N  /  ( M  gcd  N ) )  e.  ZZ  /\  0  <  ( N  /  ( M  gcd  N ) ) ) )
6861, 66, 67sylanbrc 645 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  /  ( M  gcd  N ) )  e.  NN )
69 2nn 9877 . . . . . . 7  |-  2  e.  NN
70 rppwr 12736 . . . . . . 7  |-  ( ( ( M  /  ( M  gcd  N ) )  e.  NN  /\  ( N  /  ( M  gcd  N ) )  e.  NN  /\  2  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) )  gcd  ( N  / 
( M  gcd  N
) ) )  =  1  ->  ( (
( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  / 
( M  gcd  N
) ) ^ 2 ) )  =  1 ) )
7169, 70mp3an3 1266 . . . . . 6  |-  ( ( ( M  /  ( M  gcd  N ) )  e.  NN  /\  ( N  /  ( M  gcd  N ) )  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) )  gcd  ( N  / 
( M  gcd  N
) ) )  =  1  ->  ( (
( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  / 
( M  gcd  N
) ) ^ 2 ) )  =  1 ) )
7258, 68, 71syl2anc 642 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) )  gcd  ( N  /  ( M  gcd  N ) ) )  =  1  ->  ( (
( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  / 
( M  gcd  N
) ) ^ 2 ) )  =  1 ) )
7346, 72mpd 14 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  /  ( M  gcd  N ) ) ^ 2 ) )  =  1 )
7433, 42, 733eqtr2d 2321 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M ^ 2 )  gcd  ( N ^ 2 ) )  /  (
( M  gcd  N
) ^ 2 ) )  =  1 )
7514, 17anim12i 549 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M ^
2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ ) )
7613nnne0d 9790 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( M ^ 2 )  =/=  0 )
7776neneqd 2462 . . . . . . . 8  |-  ( M  e.  NN  ->  -.  ( M ^ 2 )  =  0 )
7877intnanrd 883 . . . . . . 7  |-  ( M  e.  NN  ->  -.  ( ( M ^
2 )  =  0  /\  ( N ^
2 )  =  0 ) )
7978adantr 451 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  -.  ( ( M ^ 2 )  =  0  /\  ( N ^ 2 )  =  0 ) )
80 gcdn0cl 12693 . . . . . 6  |-  ( ( ( ( M ^
2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ )  /\  -.  ( ( M ^ 2 )  =  0  /\  ( N ^ 2 )  =  0 ) )  -> 
( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  NN )
8175, 79, 80syl2anc 642 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  NN )
8281nncnd 9762 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  CC )
8310nnne0d 9790 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  =/=  0 )
84 ax-1cn 8795 . . . . 5  |-  1  e.  CC
85 divmul 9427 . . . . 5  |-  ( ( ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  CC  /\  1  e.  CC  /\  ( ( ( M  gcd  N
) ^ 2 )  e.  CC  /\  (
( M  gcd  N
) ^ 2 )  =/=  0 ) )  ->  ( ( ( ( M ^ 2 )  gcd  ( N ^ 2 ) )  /  ( ( M  gcd  N ) ^
2 ) )  =  1  <->  ( ( ( M  gcd  N ) ^ 2 )  x.  1 )  =  ( ( M ^ 2 )  gcd  ( N ^ 2 ) ) ) )
8684, 85mp3an2 1265 . . . 4  |-  ( ( ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  CC  /\  (
( ( M  gcd  N ) ^ 2 )  e.  CC  /\  (
( M  gcd  N
) ^ 2 )  =/=  0 ) )  ->  ( ( ( ( M ^ 2 )  gcd  ( N ^ 2 ) )  /  ( ( M  gcd  N ) ^
2 ) )  =  1  <->  ( ( ( M  gcd  N ) ^ 2 )  x.  1 )  =  ( ( M ^ 2 )  gcd  ( N ^ 2 ) ) ) )
8782, 11, 83, 86syl12anc 1180 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( ( M ^ 2 )  gcd  ( N ^
2 ) )  / 
( ( M  gcd  N ) ^ 2 ) )  =  1  <->  (
( ( M  gcd  N ) ^ 2 )  x.  1 )  =  ( ( M ^
2 )  gcd  ( N ^ 2 ) ) ) )
8874, 87mpbid 201 . 2  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  gcd  N ) ^
2 )  x.  1 )  =  ( ( M ^ 2 )  gcd  ( N ^
2 ) ) )
8912, 88eqtr3d 2317 1  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  =  ( ( M ^ 2 )  gcd  ( N ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    x. cmul 8742    < clt 8867    / cdiv 9423   NNcn 9746   2c2 9795   ZZcz 10024   ^cexp 11104    || cdivides 12531    gcd cgcd 12685
This theorem is referenced by:  dvdssqlem  12738  nn0gcdsq  12823  pythagtriplem3  12871
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686
  Copyright terms: Public domain W3C validator