MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqgcd Unicode version

Theorem sqgcd 12945
Description: Square distributes over GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
sqgcd  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  =  ( ( M ^ 2 )  gcd  ( N ^ 2 ) ) )

Proof of Theorem sqgcd
StepHypRef Expression
1 nnz 10196 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  ZZ )
2 nnz 10196 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  ZZ )
31, 2anim12i 549 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
4 nnne0 9925 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  =/=  0 )
54neneqd 2545 . . . . . . . 8  |-  ( M  e.  NN  ->  -.  M  =  0 )
65intnanrd 883 . . . . . . 7  |-  ( M  e.  NN  ->  -.  ( M  =  0  /\  N  =  0
) )
76adantr 451 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  -.  ( M  =  0  /\  N  =  0 ) )
8 gcdn0cl 12901 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  e.  NN )
93, 7, 8syl2anc 642 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  NN )
109nnsqcld 11430 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  e.  NN )
1110nncnd 9909 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  e.  CC )
1211mulid1d 8999 . 2  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  gcd  N ) ^
2 )  x.  1 )  =  ( ( M  gcd  N ) ^ 2 ) )
13 nnsqcl 11338 . . . . . . 7  |-  ( M  e.  NN  ->  ( M ^ 2 )  e.  NN )
1413nnzd 10267 . . . . . 6  |-  ( M  e.  NN  ->  ( M ^ 2 )  e.  ZZ )
1514adantr 451 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M ^ 2 )  e.  ZZ )
16 nnsqcl 11338 . . . . . . 7  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  NN )
1716nnzd 10267 . . . . . 6  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  ZZ )
1817adantl 452 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N ^ 2 )  e.  ZZ )
19 gcddvds 12902 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
201, 2, 19syl2an 463 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
2120simpld 445 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  ||  M )
229nnzd 10267 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  ZZ )
231adantr 451 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  ZZ )
24 dvdssqim 12940 . . . . . . 7  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( M ^
2 ) ) )
2522, 23, 24syl2anc 642 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  M  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( M ^
2 ) ) )
2621, 25mpd 14 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 ) 
||  ( M ^
2 ) )
2720simprd 449 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  ||  N )
282adantl 452 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  ZZ )
29 dvdssqim 12940 . . . . . . 7  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  N  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) ) )
3022, 28, 29syl2anc 642 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  N  -> 
( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) ) )
3127, 30mpd 14 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) )
32 gcddiv 12936 . . . . 5  |-  ( ( ( ( M ^
2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ  /\  ( ( M  gcd  N ) ^ 2 )  e.  NN )  /\  ( ( ( M  gcd  N ) ^
2 )  ||  ( M ^ 2 )  /\  ( ( M  gcd  N ) ^ 2 ) 
||  ( N ^
2 ) ) )  ->  ( ( ( M ^ 2 )  gcd  ( N ^
2 ) )  / 
( ( M  gcd  N ) ^ 2 ) )  =  ( ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^ 2 ) )  gcd  ( ( N ^ 2 )  / 
( ( M  gcd  N ) ^ 2 ) ) ) )
3315, 18, 10, 26, 31, 32syl32anc 1191 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M ^ 2 )  gcd  ( N ^ 2 ) )  /  (
( M  gcd  N
) ^ 2 ) )  =  ( ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^ 2 ) )  gcd  ( ( N ^ 2 )  / 
( ( M  gcd  N ) ^ 2 ) ) ) )
34 nncn 9901 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  CC )
3534adantr 451 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  CC )
369nncnd 9909 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  CC )
379nnne0d 9937 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  =/=  0 )
3835, 36, 37sqdivd 11423 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  / 
( M  gcd  N
) ) ^ 2 )  =  ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^
2 ) ) )
39 nncn 9901 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  CC )
4039adantl 452 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  CC )
4140, 36, 37sqdivd 11423 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( N  / 
( M  gcd  N
) ) ^ 2 )  =  ( ( N ^ 2 )  /  ( ( M  gcd  N ) ^
2 ) ) )
4238, 41oveq12d 5999 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  /  ( M  gcd  N ) ) ^ 2 ) )  =  ( ( ( M ^ 2 )  /  ( ( M  gcd  N ) ^
2 ) )  gcd  ( ( N ^
2 )  /  (
( M  gcd  N
) ^ 2 ) ) ) )
43 gcddiv 12936 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( M  gcd  N )  e.  NN )  /\  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )  ->  ( ( M  gcd  N )  / 
( M  gcd  N
) )  =  ( ( M  /  ( M  gcd  N ) )  gcd  ( N  / 
( M  gcd  N
) ) ) )
4423, 28, 9, 20, 43syl31anc 1186 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  /  ( M  gcd  N ) )  =  ( ( M  /  ( M  gcd  N ) )  gcd  ( N  /  ( M  gcd  N ) ) ) )
4536, 37dividd 9681 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  /  ( M  gcd  N ) )  =  1 )
4644, 45eqtr3d 2400 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  / 
( M  gcd  N
) )  gcd  ( N  /  ( M  gcd  N ) ) )  =  1 )
47 dvdsval2 12742 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  ( M  gcd  N )  =/=  0  /\  M  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  <->  ( M  /  ( M  gcd  N ) )  e.  ZZ ) )
4822, 37, 23, 47syl3anc 1183 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  M  <->  ( M  /  ( M  gcd  N ) )  e.  ZZ ) )
4921, 48mpbid 201 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  /  ( M  gcd  N ) )  e.  ZZ )
50 nnre 9900 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  RR )
5150adantr 451 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  M  e.  RR )
529nnred 9908 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N
)  e.  RR )
53 nngt0 9922 . . . . . . . . 9  |-  ( M  e.  NN  ->  0  <  M )
5453adantr 451 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  M )
559nngt0d 9936 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  ( M  gcd  N ) )
5651, 52, 54, 55divgt0d 9839 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  ( M  /  ( M  gcd  N ) ) )
57 elnnz 10185 . . . . . . 7  |-  ( ( M  /  ( M  gcd  N ) )  e.  NN  <->  ( ( M  /  ( M  gcd  N ) )  e.  ZZ  /\  0  <  ( M  /  ( M  gcd  N ) ) ) )
5849, 56, 57sylanbrc 645 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  /  ( M  gcd  N ) )  e.  NN )
59 dvdsval2 12742 . . . . . . . . 9  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  ( M  gcd  N )  =/=  0  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  N  <->  ( N  /  ( M  gcd  N ) )  e.  ZZ ) )
6022, 37, 28, 59syl3anc 1183 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N )  ||  N  <->  ( N  /  ( M  gcd  N ) )  e.  ZZ ) )
6127, 60mpbid 201 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  /  ( M  gcd  N ) )  e.  ZZ )
62 nnre 9900 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  RR )
6362adantl 452 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  N  e.  RR )
64 nngt0 9922 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <  N )
6564adantl 452 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  N )
6663, 52, 65, 55divgt0d 9839 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  0  <  ( N  /  ( M  gcd  N ) ) )
67 elnnz 10185 . . . . . . 7  |-  ( ( N  /  ( M  gcd  N ) )  e.  NN  <->  ( ( N  /  ( M  gcd  N ) )  e.  ZZ  /\  0  <  ( N  /  ( M  gcd  N ) ) ) )
6861, 66, 67sylanbrc 645 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  /  ( M  gcd  N ) )  e.  NN )
69 2nn 10026 . . . . . . 7  |-  2  e.  NN
70 rppwr 12944 . . . . . . 7  |-  ( ( ( M  /  ( M  gcd  N ) )  e.  NN  /\  ( N  /  ( M  gcd  N ) )  e.  NN  /\  2  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) )  gcd  ( N  / 
( M  gcd  N
) ) )  =  1  ->  ( (
( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  / 
( M  gcd  N
) ) ^ 2 ) )  =  1 ) )
7169, 70mp3an3 1267 . . . . . 6  |-  ( ( ( M  /  ( M  gcd  N ) )  e.  NN  /\  ( N  /  ( M  gcd  N ) )  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) )  gcd  ( N  / 
( M  gcd  N
) ) )  =  1  ->  ( (
( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  / 
( M  gcd  N
) ) ^ 2 ) )  =  1 ) )
7258, 68, 71syl2anc 642 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) )  gcd  ( N  /  ( M  gcd  N ) ) )  =  1  ->  ( (
( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  / 
( M  gcd  N
) ) ^ 2 ) )  =  1 ) )
7346, 72mpd 14 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  /  ( M  gcd  N ) ) ^ 2 )  gcd  ( ( N  /  ( M  gcd  N ) ) ^ 2 ) )  =  1 )
7433, 42, 733eqtr2d 2404 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M ^ 2 )  gcd  ( N ^ 2 ) )  /  (
( M  gcd  N
) ^ 2 ) )  =  1 )
7514, 17anim12i 549 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M ^
2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ ) )
7613nnne0d 9937 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( M ^ 2 )  =/=  0 )
7776neneqd 2545 . . . . . . . 8  |-  ( M  e.  NN  ->  -.  ( M ^ 2 )  =  0 )
7877intnanrd 883 . . . . . . 7  |-  ( M  e.  NN  ->  -.  ( ( M ^
2 )  =  0  /\  ( N ^
2 )  =  0 ) )
7978adantr 451 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  -.  ( ( M ^ 2 )  =  0  /\  ( N ^ 2 )  =  0 ) )
80 gcdn0cl 12901 . . . . . 6  |-  ( ( ( ( M ^
2 )  e.  ZZ  /\  ( N ^ 2 )  e.  ZZ )  /\  -.  ( ( M ^ 2 )  =  0  /\  ( N ^ 2 )  =  0 ) )  -> 
( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  NN )
8175, 79, 80syl2anc 642 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  NN )
8281nncnd 9909 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  CC )
8310nnne0d 9937 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  =/=  0 )
84 ax-1cn 8942 . . . . 5  |-  1  e.  CC
85 divmul 9574 . . . . 5  |-  ( ( ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  CC  /\  1  e.  CC  /\  ( ( ( M  gcd  N
) ^ 2 )  e.  CC  /\  (
( M  gcd  N
) ^ 2 )  =/=  0 ) )  ->  ( ( ( ( M ^ 2 )  gcd  ( N ^ 2 ) )  /  ( ( M  gcd  N ) ^
2 ) )  =  1  <->  ( ( ( M  gcd  N ) ^ 2 )  x.  1 )  =  ( ( M ^ 2 )  gcd  ( N ^ 2 ) ) ) )
8684, 85mp3an2 1266 . . . 4  |-  ( ( ( ( M ^
2 )  gcd  ( N ^ 2 ) )  e.  CC  /\  (
( ( M  gcd  N ) ^ 2 )  e.  CC  /\  (
( M  gcd  N
) ^ 2 )  =/=  0 ) )  ->  ( ( ( ( M ^ 2 )  gcd  ( N ^ 2 ) )  /  ( ( M  gcd  N ) ^
2 ) )  =  1  <->  ( ( ( M  gcd  N ) ^ 2 )  x.  1 )  =  ( ( M ^ 2 )  gcd  ( N ^ 2 ) ) ) )
8782, 11, 83, 86syl12anc 1181 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( ( M ^ 2 )  gcd  ( N ^
2 ) )  / 
( ( M  gcd  N ) ^ 2 ) )  =  1  <->  (
( ( M  gcd  N ) ^ 2 )  x.  1 )  =  ( ( M ^
2 )  gcd  ( N ^ 2 ) ) ) )
8874, 87mpbid 201 . 2  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( ( M  gcd  N ) ^
2 )  x.  1 )  =  ( ( M ^ 2 )  gcd  ( N ^
2 ) ) )
8912, 88eqtr3d 2400 1  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M  gcd  N ) ^ 2 )  =  ( ( M ^ 2 )  gcd  ( N ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1647    e. wcel 1715    =/= wne 2529   class class class wbr 4125  (class class class)co 5981   CCcc 8882   RRcr 8883   0cc0 8884   1c1 8885    x. cmul 8889    < clt 9014    / cdiv 9570   NNcn 9893   2c2 9942   ZZcz 10175   ^cexp 11269    || cdivides 12739    gcd cgcd 12893
This theorem is referenced by:  dvdssqlem  12946  nn0gcdsq  13031  pythagtriplem3  13079
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-er 6802  df-en 7007  df-dom 7008  df-sdom 7009  df-sup 7341  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-n0 10115  df-z 10176  df-uz 10382  df-rp 10506  df-fl 11089  df-mod 11138  df-seq 11211  df-exp 11270  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-dvds 12740  df-gcd 12894
  Copyright terms: Public domain W3C validator