MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqgt0sr Unicode version

Theorem sqgt0sr 8728
Description: The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
sqgt0sr  |-  ( ( A  e.  R.  /\  A  =/=  0R )  ->  0R  <R  ( A  .R  A ) )

Proof of Theorem sqgt0sr
StepHypRef Expression
1 0r 8702 . . . . 5  |-  0R  e.  R.
2 ltsosr 8716 . . . . . 6  |-  <R  Or  R.
3 sotrieq 4341 . . . . . 6  |-  ( ( 
<R  Or  R.  /\  ( A  e.  R.  /\  0R  e.  R. ) )  -> 
( A  =  0R  <->  -.  ( A  <R  0R  \/  0R  <R  A ) ) )
42, 3mpan 651 . . . . 5  |-  ( ( A  e.  R.  /\  0R  e.  R. )  -> 
( A  =  0R  <->  -.  ( A  <R  0R  \/  0R  <R  A ) ) )
51, 4mpan2 652 . . . 4  |-  ( A  e.  R.  ->  ( A  =  0R  <->  -.  ( A  <R  0R  \/  0R  <R  A ) ) )
65necon2abid 2503 . . 3  |-  ( A  e.  R.  ->  (
( A  <R  0R  \/  0R  <R  A )  <->  A  =/=  0R ) )
7 m1r 8704 . . . . . . . . 9  |-  -1R  e.  R.
8 mulclsr 8706 . . . . . . . . 9  |-  ( ( A  e.  R.  /\  -1R  e.  R. )  -> 
( A  .R  -1R )  e.  R. )
97, 8mpan2 652 . . . . . . . 8  |-  ( A  e.  R.  ->  ( A  .R  -1R )  e. 
R. )
10 ltasr 8722 . . . . . . . 8  |-  ( ( A  .R  -1R )  e.  R.  ->  ( A  <R  0R  <->  ( ( A  .R  -1R )  +R  A )  <R  (
( A  .R  -1R )  +R  0R ) ) )
119, 10syl 15 . . . . . . 7  |-  ( A  e.  R.  ->  ( A  <R  0R  <->  ( ( A  .R  -1R )  +R  A )  <R  (
( A  .R  -1R )  +R  0R ) ) )
12 addcomsr 8709 . . . . . . . . 9  |-  ( ( A  .R  -1R )  +R  A )  =  ( A  +R  ( A  .R  -1R ) )
13 pn0sr 8723 . . . . . . . . 9  |-  ( A  e.  R.  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )
1412, 13syl5eq 2327 . . . . . . . 8  |-  ( A  e.  R.  ->  (
( A  .R  -1R )  +R  A )  =  0R )
15 0idsr 8719 . . . . . . . . 9  |-  ( ( A  .R  -1R )  e.  R.  ->  ( ( A  .R  -1R )  +R  0R )  =  ( A  .R  -1R )
)
169, 15syl 15 . . . . . . . 8  |-  ( A  e.  R.  ->  (
( A  .R  -1R )  +R  0R )  =  ( A  .R  -1R ) )
1714, 16breq12d 4036 . . . . . . 7  |-  ( A  e.  R.  ->  (
( ( A  .R  -1R )  +R  A
)  <R  ( ( A  .R  -1R )  +R  0R )  <->  0R  <R  ( A  .R  -1R )
) )
1811, 17bitrd 244 . . . . . 6  |-  ( A  e.  R.  ->  ( A  <R  0R  <->  0R  <R  ( A  .R  -1R )
) )
19 mulgt0sr 8727 . . . . . . 7  |-  ( ( 0R  <R  ( A  .R  -1R )  /\  0R  <R  ( A  .R  -1R ) )  ->  0R  <R  ( ( A  .R  -1R )  .R  ( A  .R  -1R ) ) )
2019anidms 626 . . . . . 6  |-  ( 0R 
<R  ( A  .R  -1R )  ->  0R  <R  (
( A  .R  -1R )  .R  ( A  .R  -1R ) ) )
2118, 20syl6bi 219 . . . . 5  |-  ( A  e.  R.  ->  ( A  <R  0R  ->  0R  <R  ( ( A  .R  -1R )  .R  ( A  .R  -1R ) ) ) )
22 mulcomsr 8711 . . . . . . . . . . . 12  |-  ( -1R 
.R  A )  =  ( A  .R  -1R )
2322oveq1i 5868 . . . . . . . . . . 11  |-  ( ( -1R  .R  A )  .R  -1R )  =  ( ( A  .R  -1R )  .R  -1R )
24 mulasssr 8712 . . . . . . . . . . 11  |-  ( ( -1R  .R  A )  .R  -1R )  =  ( -1R  .R  ( A  .R  -1R ) )
25 mulasssr 8712 . . . . . . . . . . 11  |-  ( ( A  .R  -1R )  .R  -1R )  =  ( A  .R  ( -1R 
.R  -1R ) )
2623, 24, 253eqtr3i 2311 . . . . . . . . . 10  |-  ( -1R 
.R  ( A  .R  -1R ) )  =  ( A  .R  ( -1R 
.R  -1R ) )
27 m1m1sr 8715 . . . . . . . . . . 11  |-  ( -1R 
.R  -1R )  =  1R
2827oveq2i 5869 . . . . . . . . . 10  |-  ( A  .R  ( -1R  .R  -1R ) )  =  ( A  .R  1R )
2926, 28eqtri 2303 . . . . . . . . 9  |-  ( -1R 
.R  ( A  .R  -1R ) )  =  ( A  .R  1R )
3029oveq2i 5869 . . . . . . . 8  |-  ( A  .R  ( -1R  .R  ( A  .R  -1R )
) )  =  ( A  .R  ( A  .R  1R ) )
31 mulasssr 8712 . . . . . . . 8  |-  ( ( A  .R  -1R )  .R  ( A  .R  -1R ) )  =  ( A  .R  ( -1R 
.R  ( A  .R  -1R ) ) )
32 mulasssr 8712 . . . . . . . 8  |-  ( ( A  .R  A )  .R  1R )  =  ( A  .R  ( A  .R  1R ) )
3330, 31, 323eqtr4i 2313 . . . . . . 7  |-  ( ( A  .R  -1R )  .R  ( A  .R  -1R ) )  =  ( ( A  .R  A
)  .R  1R )
34 mulclsr 8706 . . . . . . . . 9  |-  ( ( A  e.  R.  /\  A  e.  R. )  ->  ( A  .R  A
)  e.  R. )
35 1idsr 8720 . . . . . . . . 9  |-  ( ( A  .R  A )  e.  R.  ->  (
( A  .R  A
)  .R  1R )  =  ( A  .R  A ) )
3634, 35syl 15 . . . . . . . 8  |-  ( ( A  e.  R.  /\  A  e.  R. )  ->  ( ( A  .R  A )  .R  1R )  =  ( A  .R  A ) )
3736anidms 626 . . . . . . 7  |-  ( A  e.  R.  ->  (
( A  .R  A
)  .R  1R )  =  ( A  .R  A ) )
3833, 37syl5eq 2327 . . . . . 6  |-  ( A  e.  R.  ->  (
( A  .R  -1R )  .R  ( A  .R  -1R ) )  =  ( A  .R  A ) )
3938breq2d 4035 . . . . 5  |-  ( A  e.  R.  ->  ( 0R  <R  ( ( A  .R  -1R )  .R  ( A  .R  -1R )
)  <->  0R  <R  ( A  .R  A ) ) )
4021, 39sylibd 205 . . . 4  |-  ( A  e.  R.  ->  ( A  <R  0R  ->  0R  <R  ( A  .R  A
) ) )
41 mulgt0sr 8727 . . . . . 6  |-  ( ( 0R  <R  A  /\  0R  <R  A )  ->  0R  <R  ( A  .R  A ) )
4241anidms 626 . . . . 5  |-  ( 0R 
<R  A  ->  0R  <R  ( A  .R  A ) )
4342a1i 10 . . . 4  |-  ( A  e.  R.  ->  ( 0R  <R  A  ->  0R  <R  ( A  .R  A
) ) )
4440, 43jaod 369 . . 3  |-  ( A  e.  R.  ->  (
( A  <R  0R  \/  0R  <R  A )  ->  0R  <R  ( A  .R  A ) ) )
456, 44sylbird 226 . 2  |-  ( A  e.  R.  ->  ( A  =/=  0R  ->  0R  <R  ( A  .R  A
) ) )
4645imp 418 1  |-  ( ( A  e.  R.  /\  A  =/=  0R )  ->  0R  <R  ( A  .R  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023    Or wor 4313  (class class class)co 5858   R.cnr 8489   0Rc0r 8490   1Rc1r 8491   -1Rcm1r 8492    +R cplr 8493    .R cmr 8494    <R cltr 8495
This theorem is referenced by:  recexsr  8729
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ec 6662  df-qs 6666  df-ni 8496  df-pli 8497  df-mi 8498  df-lti 8499  df-plpq 8532  df-mpq 8533  df-ltpq 8534  df-enq 8535  df-nq 8536  df-erq 8537  df-plq 8538  df-mq 8539  df-1nq 8540  df-rq 8541  df-ltnq 8542  df-np 8605  df-1p 8606  df-plp 8607  df-mp 8608  df-ltp 8609  df-plpr 8679  df-mpr 8680  df-enr 8681  df-nr 8682  df-plr 8683  df-mr 8684  df-ltr 8685  df-0r 8686  df-1r 8687  df-m1r 8688
  Copyright terms: Public domain W3C validator